No Arabic abstract
Galaxy masses can be estimated by a variety of methods; each applicable in different circumstances, and each suffering from different systematic uncertainties. Confirmation of results obtained by one technique with analysis by another is particularly important. Recent SDSS weak lensing measurements of the projected-mass correlation function reveal a linear relation between galaxy luminosities and the depth of their dark matter halos (measured on 260 hinv kpc scales). In this work we use an entirely independent dynamical method to confirm these results. We begin by assembling a sample of 618 relatively isolated host galaxies, surrounded by a total of 1225 substantially fainter satellites. We observe the mean dynamical effect of these hosts on the motions of their satellites by assembling velocity difference histograms. Dividing the sample by host properties, we find significant variations in satellite velocity dispersion with host luminosity. We quantify these variations using a simple dynamical model, measuring mtsd a dynamical mass within 260 hinv kpc. The appropriateness of this mass reconstruction is checked by conducting a similar analysis within an N-body simulation. Comparison between the dynamical and lensing mass-to-light scalings shows reasonable agreement, providing some quantitative confirmation for the lensing results.
We present new measurements of scaling laws relating the luminosity of galaxies to the amplitude and shape of their dark matter halos. Early imaging and spectroscopic data from the Sloan Digital Sky Survey are used to make weak lensing measurements of the surface mass density contrast Delta Sigma_+ around classes of lens objects. This surface mass density contrast as a function of radius is a measure of the galaxy-mass correlation function (GMCF). Because spectroscopic redshifts are available for all lens objects, the mass and distance scales are well constrained. The GMCF measured around ~31,000 lenses is well fit by a power law of the form Delta Sigma_+ = (2.5+0.7-0.6) (R/1 Mpc)^{-0.8+-0.2} h M_sun pc^-2. We compare this GMCF to galaxy luminosity, type, and environment, and find that it varies strongly with all three. We quantify these variations by comparing the normalization of a fit to the inner 260 h^-1 kpc, M_260, to the galaxy luminosity. While M_260 is not strongly related to luminosity in bluest band u, there is a simple, linear relation between M_260 and luminosity in redder bands (g, r, i, and z). We test the universality of these mass-to-light scalings by independently measuring them for spiral and elliptical galaxies,and for galaxies in a variety of environments. We find remarkable consistency in these determinations in the red bands, especially i and z. This consistency across a wide range of systems suggests that the measured scaling represents an excellent cosmic average, and that the integrated star formation history of galaxies is strongly related to the dark matter environments in which they form.
Weak lensing is emerging as a powerful observational tool to constrain cosmological models, but is at present limited by an incomplete understanding of many sources of systematic error. Many of these errors are multiplicative and depend on the population of background galaxies. We show how the commonly cited geometric test, which is rather insensitive to cosmology, can be used as a ratio test of systematics in the lensing signal at the 1 per cent level. We apply this test to the galaxy-galaxy lensing analysis of the Sloan Digital Sky Survey (SDSS), which at present is the sample with the highest weak lensing signal to noise and has the additional advantage of spectroscopic redshifts for lenses. This allows one to perform meaningful geometric tests of systematics for different subsamples of galaxies at different mean redshifts, such as brighter galaxies, fainter galaxies and high-redshift luminous red galaxies, both with and without photometric redshift estimates. We use overlapping objects between SDSS and the DEEP2 and 2SLAQ spectroscopic surveys to establish accurate calibration of photometric redshifts and to determine the redshift distributions for SDSS. We use these redshift results to compute the projected surface density contrast DeltaSigma around 259 609 spectroscopic galaxies in the SDSS; by measuring DeltaSigma with different source samples we establish consistency of the results at the 10 per cent level (1-sigma). We also use the ratio test to constrain shear calibration biases and other systematics in the SDSS survey data to determine the overall galaxy-galaxy weak lensing signal calibration uncertainty. We find no evidence of any inconsistency among many subsamples of the data.
The out-of-time-ordered correlator (OTOC) is central to the understanding of information scrambling in quantum many-body systems. In this work, we show that the OTOC in a quantum many-body system close to its critical point obeys dynamical scaling laws which are specified by a few universal critical exponents of the quantum critical point. Such scaling laws of the OTOC imply a universal form for the butterfly velocity of a chaotic system in the quantum critical region and allow one to locate the quantum critical point and extract all universal critical exponents of the quantum phase transitions. We numerically confirm the universality of the butterfly velocity in a chaotic model, namely the transverse axial next-nearest-neighbor Ising model, and show the feasibility of extracting the critical properties of quantum phase transitions from OTOC using the Lipkin-Meshkov-Glick (LMG) model.
Long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out, within the framework of reduced magnetohydrodynamics (RMHD), to understand coronal heating driven by motion of field lines anchored in the photosphere. We unambiguously identify MHD anisotropic turbulence as the physical mechanism responsible for the transport of energy from the large scales, where energy is injected by photospheric motions, to the small scales, where it is dissipated. As the loop parameters vary different regimes of turbulence develop: strong turbulence is found for weak axial magnetic fields and long loops, leading to Kolmogorov-like spectra in the perpendicular direction, while weaker and weaker regimes (steeper spectral slopes of total energy) are found for strong axial magnetic fields and short loops. As a consequence we predict that the scaling of the heating rate with axial magnetic field intensity $B_0$, which depends on the spectral index of total energy for given loop parameters, must vary from $B_0^{3/2}$ for weak fields to $B_0^{2}$ for strong fields at a given aspect ratio. The predicted heating rate is within the lower range of observed active region and quiet Sun coronal energy losses.
We study the destruction of dynamical localization, experimentally observed in an atomic realization of the kicked rotor, by a deterministic Hamiltonian perturbation, with a temporal periodicity incommensurate with the principal driving. We show that the destruction is gradual, with well defined scaling laws for the various classical and quantum parameters, in sharp contrast with predictions based on the analogy with Anderson localization.