No Arabic abstract
The double nucleus geometry of M31 is currently best explained by the eccentric disk hypothesis of Tremaine, but whether the eccentric disk resulted from the tidal disruption of an inbounding star cluster by a nuclear black hole, or by an m=1 perturbation of a native nuclear disk, remains debatable. I perform detailed 2-D decomposition of the M31 double nucleus in the Hubble Space Telescope V-band to study the bulge structure and to address competing formation scenarios of the eccentric disk. I deblend the double nucleus (P1 and P2) and the bulge simultaneously using five Sersic and one Nuker components. P1 and P2 appear to be embedded inside an intermediate component (r_e=3.2) that is nearly spherical (q=0.97+/-m0.02), while the main galaxy bulge is more elliptical (q=0.81+/-0.01). The spherical bulge mass of 2.8x10^7 M_sol is comparable to the supermassive black hole mass (3x10^7 M_sol). In the 2-D decomposition, the bulge is consistent with being centered near the UV peak of P2, but the exact position is difficult to pinpoint because of dust in the bulge. P1 and P2 are comparable in mass. Within a radius r=1arcsec of P2, the relative mass fraction of the nuclear components is M_BH:M_bulge:P1: P2 = 4.3:1.2:1:0.7, assuming the luminous components have a common mass-to-light ratio of 5.7. The eccentric disk as a whole (P1+P2) is massive, M ~ 2.1x10^7 M_sol, comparable to the black hole and the local bulge mass. As such, the eccentric disk could not have been formed entirely out of stars that were stripped from an inbounding star cluster. Hence, the more favored scenario is that of a disk formed in situ by an m=1 perturbation, caused possibly by the passing of a giant molecular cloud, or the passing/accretion of a small globular cluster.
We present a method for constructing models of weakly self-gravitating, finite dispersion eccentric stellar disks around central black holes. The disk is stationary in a frame rotating at a constant precession speed. The stars populate quasiperiodic orbits whose parents are numerically integrated periodic orbits in the total potential. We approximate the quasiperiodic orbits by distributions of Kepler orbits dispersed in eccentricity and orientation, using an approximate phase space distribution function written in terms of the Kepler integrals of motion. We show an example of a model with properties similar to those of the double nucleus of M31. The properties of our models are primarily determined by the behavior of the periodic orbits. Self-gravity in the disk causes these orbits to assume a characteristic radial eccentricity profile, which gives rise to distinctive multi-peaked line-of-sight velocity distributions (LOSVDs) along lines of sight near the black hole. The multi-peaked features should be observable in M31 at the resolution of STIS. These features provide the best means of identifying an eccentric nuclear disk in M31, and can be used to constrain the disk properties and black hole mass.
We present three-dimensional eccentric disc models of the nucleus of M31, modelling the disc as a linear combination of thick rings of massless stars orbiting in the potential of a central black hole. Our models are nonparametric generalisations of the parametric models of Peiris & Tremaine. The models reproduce well the observed WFPC2 photometry, the detailed line-of-sight velocity distributions from STIS observations along P1 and P2, together with the qualitative features of the OASIS kinematic maps. We confirm Peiris & Tremaines finding that nuclear discs aligned with the larger disc of M31 are strongly ruled out. Our optimal model is inclined at 57 degrees with respect to the line of sight of M31 and has a position angle of 55 degrees. It has a central black hole of mass 10^8 solar masses, and, when viewed in three dimensions, shows a clear enhancement in the density of stars around the black hole. The distribution of orbit eccentricities in our models is similar to Peiris & Tremaines model, but we find significantly different inclination distributions, which might provide valuable clues to the origin of the disc.
We construct dynamical models of the ``double nucleus of M31 in which the nucleus consists of an eccentric disk of stars orbiting a central black hole. The principal approximation in these models is that the disk stars travel in a Kepler potential, i.e., we neglect the mass of the disk relative to the black hole. We consider both ``aligned models, in which the eccentric disk lies in the plane of the large-scale M31 disk, and ``non-aligned models, in which the orientation of the eccentric disk is fitted to the data. Both types of model can reproduce the double structure and overall morphology seen in Hubble Space Telescope photometry. In comparison with the best available ground-based spectroscopy, the models reproduce the asymmetric rotation curve, the peak height of the dispersion profile, and the qualitative behavior of the Gauss-Hermite coefficients h_3 and h_4. Aligned models fail to reproduce the observation that the surface brightness at P1 is higher than at P2 and yield significantly poorer fits to the kinematics; thus we favor non-aligned models. Eccentric-disk models fitted to ground-based spectroscopy are used to predict the kinematics observed at much higher resolution by the STIS instrument on the Hubble Space Telescope (Bender et al. 2003), and we find generally satisfactory agreement.
Intrinsic image decomposition is the classical task of mapping image to albedo. The WHDR dataset allows methods to be evaluated by comparing predictions to human judgements (lighter, same as, darker). The best modern intrinsic image methods learn a map from image to albedo using rendered models and human judgements. This is convenient for practical methods, but cannot explain how a visual agent without geometric, surface and illumination models and a renderer could learn to recover intrinsic images. This paper describes a method that learns intrinsic image decomposition without seeing WHDR annotations, rendered data, or ground truth data. The method relies on paradigms - fake albedos and fake shading fields - together with a novel smoothing procedure that ensures good behavior at short scales on real images. Long scale error is controlled by averaging. Our method achieves WHDR scores competitive with those of strong recent methods allowed to see training WHDR annotations, rendered data, and ground truth data. Because our method is unsupervised, we can compute estimates of the test/train variance of WHDR scores; these are quite large, and it is unsafe to rely small differences in reported WHDR.
Language and vision are processed as two different modal in current work for image captioning. However, recent work on Super Characters method shows the effectiveness of two-dimensional word embedding, which converts text classification problem into image classification problem. In this paper, we propose the SuperCaptioning method, which borrows the idea of two-dimensional word embedding from Super Characters method, and processes the information of language and vision together in one single CNN model. The experimental results on Flickr30k data shows the proposed method gives high quality image captions. An interactive demo is ready to show at the workshop.