No Arabic abstract
The calculations of the ratios of the Helium-like ion X-ray lines from C V to Si XIII are revisited in order to apply the results to density, temperature and ionization process diagnostics of data from high-resolution spectroscopy of the new generation of X-ray satellites: Chandra and XMM-Newton. Comparing to earlier computations, Porquet & Dubau (2000), the best experimental values are used for radiative transition probabilities. The influence of an external radiation field (photo-excitation), the contribution from unresolved dielectronic satellite lines and the optical depth are taken into account. These diagnostics could be applied to collision-dominated plasmas (e.g., stellar coronae), photo-ionized plasmas (e.g., ``Warm Absorber in AGNs), and transient plasmas (e.g., SNRs).
Using the new version of the photoionization code Titan designed for plane-parallel photoionized thick hot media, which is unprecedented from the point of view of line transfer, we have undertaken a study of the influence of different parameters on the He-like and H-like emission of a medium photoionized by an X-ray source. We explain why in modelling the emitting medium it is important to solve in a self-consistent way the thermal and ionization equilibria and to take into account the interconnection between the different ions. We give the equivalent widths of the sum of the He-like triplets and the triplet intensity ratios $G$ and $R$, for the most important He-like ions, for a range of density, column density, and ionization parameter, in the case of constant density media. We show that the line intensities from a given ion can be accounted for, either by small values of both the column density and of the ionization parameter, or by large values of both quantities, and it is necessary to take into account several ions to disentangle these possibilities. We show also that a pure recombination spectrum almost never exists in a photoionized medium: either it is thin, and resonance lines are formed by radiative excitation, or it is thick, and free-bound absorption destroys the resonance photons as they undergo resonant diffusion.
Rich soft X-ray emission lines of highly charged silicon ions (Si VI--Si XII) were observed by irradiating an ultra-intense laser pulse with width of 200 fs and energy of $sim$90 mJ on the solid silicon target. The high resolution spectra of highly charged silicon ions with full-width at half maximum (FWHM) of $sim$0.3--0.4AA is analyzed in wavelength range of 40--90 AA . The wavelengths of 53 prominent lines are determined with statistical uncertainties being up to 0.005 AA . Collisional-radiative models were constructed for Si VI -- Si XII ions, which satisfactorily reproduces the experimental spectra, and helps the line identification. Calculations at different electron densities reveal that the spectra of dense plasmas are more complicate than the spectra of thin plasmas. A comparison with the Kelly database reveals a good agreement for most peak intensities, and differences for a few emission lines.
Ionized outflows in Active Galactic Nuclei (AGN) are thought to influence their nuclear and local galactic environment. However, the distance of the outflows with respect to the central engine is poorly constrained, which limits our understanding of their kinetic power as a cosmic feedback channel. Therefore, the impact of AGN outflows on their host galaxies is uncertain. However, when the density of the outflows is known, their distance can be immediately obtained from their modelled ionization parameter. With the new self-consistent PhotoIONization (PION) model in the SPEX code, we are able to calculate detailed level populations, including the ground and metastable levels. This enables us to determine under what physical conditions the metastable levels are significantly populated. We then identify characteristic lines from these metastable levels in the 1 -- 2000 {AA} wavelength range. In the large density range of $n_H in (10^6, 10^{20} m^{-3}$, the metastable levels 2s 2p $(^3P_{0-2})$ in Be-like ions can be significantly populated. For B-like ions, merely the first excited level 2s$^2$ 2p $(^2P_{3/2})$ can be used as a density probe. For C-like ions, the first two excited levels 2s$^2$ 2p$^2$ ($^3P_1$ and $^3P_2$) are better density probes than the next two excited levels 2s$^2$ 2p$^2$ ($^1S_0$ and $^1D_2$). Different ions in the same isoelectronic sequence cover not only a wide range of ionization parameter, but also a wide range of density. On the other hand, within the same isonuclear sequence, less ionized ions probe lower density and smaller ionization parameter. Finally, we re-analyzed the high-resolution grating spectra of NGC 5548 observed with Chandra in January 2002, using a set of PION components to account for the ionized outflow. We derive lower (or upper) limits of plasma density in five out of six PION components, based on the presence (or absence) of the metastable absorption lines.
The most precise to-date evaluation of the nuclear recoil effect on the $n=1$ and $n=2$ energy levels of He-like ions is presented in the range $Z=12-100$. The one-electron recoil contribution is calculated within the framework of the rigorous QED approach to first order in the electron-to-nucleus mass ratio $m/M$ and to all orders in the parameter $alpha Z$. The two-electron $m/M$ recoil term is calculated employing the $1/Z$ perturbation theory. The recoil contribution of the zeroth order in $1/Z$ is evaluated to all orders in $alpha Z$, while the $1/Z$ term is calculated using the Breit approximation. The recoil corrections of the second and higher orders in $1/Z$ are taken into account within the nonrelativistic approach. The obtained results are compared with the previous evaluation of this effect [A. N. Artemyev et al., Phys. Rev. A 71, 062104 (2005)].
We review X-ray plasma diagnostics based on the line ratios of He-like ions. Triplet/singlet line intensities can be used to determine electronic temperature and density, and were first developed for the study of the solar corona. Since the launches of the X-ray satellites Chandra and XMM-Newton, these diagnostics have been extended and used (from CV to Si XIII) for a wide variety of astrophysical plasmas such as stellar coronae, supernova remnants, solar system objects, active galactic nuclei, and X-ray binaries. Moreover, the intensities of He-like ions can be used to determine the ionization process(es) at work, as well as the distance between the X-ray plasma and the UV emission source for example in hot stars. In the near future thanks to the next generation of X-ray satellites (e.g., Astro-H and IXO), higher-Z He-like lines (e.g., iron) will be resolved, allowing plasmas with higher temperatures and densities to be probed. Moreover, the so-called satellite lines that are formed closed to parent He-like lines, will provide additional valuable diagnostics to determine electronic temperature, ionic fraction, departure from ionization equilibrium and/or from Maxwellian electron distribution.