No Arabic abstract
We present near-infrared spectroscopy and Hubble Space Telescope (HST) imaging of EROJ003707+0909.5, the brightest of three gravitationally-lensed images of an Extremely Red Object (ERO) at z=1.6, in the field of the massive cluster A68 (z=0.255). We exploit the superlative resolution of our HST data and the enhanced spatial resolution and sensitivity afforded by the lens amplification to reconstruct the source-plane properties of this ERO. Our morphological and photometric analysis reveals that EROJ003707 is an L* early-type disk-galaxy and we estimate that ~10 per cent of EROs with (R-K)>=5.3 and K<=21 may have similar properties. The unique association of passive EROs with elliptical galaxies therefore appears to be too simplistic. We speculate on the evolution of EROJ003707: if gas continues to cool onto this galaxy in the manner predicted by hierarchical galaxy formation models, then by the present day, EROJ003707 could evolve into a very luminous spiral galaxy.
We present the first three galaxy clusters of a larger sample of the most X-ray luminous galaxy clusters selected from the ROSAT Bright Survey. This project, which is a systematic search for strong lensing, aims at arc statistics, mass determinations and studies of distant lensed galaxies. The three galaxy clusters presented here have been observed with the Wide Field Imager at the ESO2.2m in the R- and V-band. The images show lensing features like distinct distorted galaxies and arcs. Mass distributions of the lensing galaxy clusters and photometric properties of some arc candidates are presented. In addition we report the discovery of three giant arcs.
Aims: We present a wide-field multi-color survey of a homogeneous sample of eleven clusters of galaxies for which we measure total masses and mass distributions from weak lensing. Methods: The eleven clusters in our sample are all X-ray luminous and span a narrow redshift range at z=0.21 +/- 0.04. The weak lensing analysis of the sample is based on ground-based wide-field imaging obtained with the CFH12k camera on CFHT. We use the methodology developed and applied previously on the massive cluster Abell 1689. A Bayesian method, implemented in the Im2shape software, is used to fit the shape parameters of the faint background galaxies and to correct for PSF smearing. With the present data, shear profiles are measured in all clusters out to at least 2 Mpc (more than 15arcmin from the center) with high confidence. The radial shear profiles are fitted with different parametric mass profiles and the virial mass M_200 is estimated for each cluster and then compared to other physical properties. Results: Scaling relations between mass and optical luminosity indicate an increase of the M/L ratio with luminosity and a L_X-M_200 relation scaling as L_X propto M_200^(0.83 +/- 0.11) while the normalization of the M_200 propto T_X^{3/2} relation is close to the one expected from hydrodynamical simulations of cluster formation as well as previous X-ray analyses. We suggest that the dispersion in the M_200-T_X and M_200-L_X relations reflects the different merging and dynamical histories for clusters of similar X-ray luminosities and intrinsic variations in their measured masses. Improved statistics of clusters over a wider mass range are required for a better control of the intrinsic scatter in scaling relations.
We present Hubble WFC3/IR slitless grism spectra of a remarkably bright $zgtrsim10$ galaxy candidate, GN-z11, identified initially from CANDELS/GOODS-N imaging data. A significant spectroscopic continuum break is detected at $lambda=1.47pm0.01~mu$m. The new grism data, combined with the photometric data, rule out all plausible lower redshift solutions for this source. The only viable solution is that this continuum break is the Ly$alpha$ break redshifted to ${z_mathrm{grism}=11.09^{+0.08}_{-0.12}}$, just $sim$400 Myr after the Big Bang. This observation extends the current spectroscopic frontier by 150 Myr to well before the Planck (instantaneous) cosmic reionization peak at z~8.8, demonstrating that galaxy build-up was well underway early in the reionization epoch at z>10. GN-z11 is remarkably and unexpectedly luminous for a galaxy at such an early time: its UV luminosity is 3x larger than L* measured at z~6-8. The Spitzer IRAC detections up to 4.5 $mu$m of this galaxy are consistent with a stellar mass of ${sim10^{9}~M_odot}$. This spectroscopic redshift measurement suggests that the James Webb Space Telescope (JWST) will be able to similarly and easily confirm such sources at z>10 and characterize their physical properties through detailed spectroscopy. Furthermore, WFIRST, with its wide-field near-IR imaging, would find large numbers of similar galaxies and contribute greatly to JWSTs spectroscopy, if it is launched early enough to overlap with JWST.
We present evidence for a Spitzer-selected luminous infrared galaxy (LIRG) behind the Bullet Cluster. The galaxy, originally identified in IRAC photometry as a multiply imaged source, has a spectral energy distribution consistent with a highly extincted (A_V~3.3), strongly star-forming galaxy at z=2.7. Using our strong gravitational lensing model presented in Bradac et al. (2006), we find that the magnifications are 10 to 50 for the three images of the galaxy. The implied infrared luminosity is consistent with the galaxy being a LIRG, with a stellar mass of M_*~2e11 M_Sun and a star formation rate of ~90 M_Sun/yr. With lensed fluxes at 24 microns of 0.58 mJy and 0.39 mJy in the two brightest images, this galaxy presents a unique opportunity for detailed study of an obscured starburst with star fomation rate comparable to that of L* galaxies at z>2.
Observational constraints on the average radial distribution profile of AGN in distant galaxy clusters can provide important clues on the triggering mechanisms of AGN activity in dense environments and are essential for a completeness evaluation of cluster selection techniques in the X-ray and mm-wavebands. The aim of this work is a statistical study with XMM-Newton of the presence and distribution of X-ray AGN in the large-scale structure environments of 22 X-ray luminous galaxy clusters in the redshift range 0.9 < z lesssim 1.6 compiled by the XMM-Newton Distant Cluster Project (XDCP). To this end, the X-ray point source lists from detections in the soft-band (0.35-2.4 keV) and full-band (0.3-7.5 keV) were stacked in cluster-centric coordinates and compared to average background number counts extracted from three independent control fields in the same observations. A significant full-band (soft-band) excess of sim78 (67) X-ray point sources is found in the cluster fields within an angular distance of 8 (4Mpc) at a statistical confidence level of 4.0 sigma (4.2 sigma), corresponding to an average number of detected excess AGN per cluster environment of 3.5pm0.9 (3.0pm0.7). The data point towards a rising radial profile in the cluster region (r<1Mpc) of predominantly low-luminosity AGN with an average detected excess of about one point source per system, with a tentative preferred occurrence along the main cluster elongation axis. A second statistically significant overdensity of brighter soft-band detected AGN is found at cluster-centric distances of 4-6 (2-3Mpc), corresponding to about three times the average cluster radius R200 of the systems. If confirmed, these results would support the idea of two different physical triggering mechanisms of X-ray AGN activity in dependence of the radially changing large-scale structure environment of the distant clusters.