Do you want to publish a course? Click here

The Optical Spectrum of the SN 1006 Supernova Remnant Revisited

188   0   0.0 ( 0 )
 Added by Parviz Ghavamian
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the deepest optical spectrum acquired to date of Balmer-dominated shocks in the NW rim of SN 1006. We detect the broad and narrow components of H-alpha, H-beta and H-gamma and report the first detection of the He I 6678 emission line in this supernova remnant. We may have detected, at the 1.5-sigma level, faint He II 4686 emission. We measure a full width half maximum of 2290 +/- 80 km/s in the broad component H-alpha line, with broad-to-narrow flux ratios of 0.84^+(0.03)_(-0.01) and 0.93^(+0.18)_(-0.16) in H-alpha and H-beta, respectively. To match these observations, our nonradiative shock models require a low degree of electron-proton equilibration at the shock front, T_e/T_p <= 0.07, and a shock speed of 2890 +/- 100 km/s. These results agree well with an earlier analysis of ultraviolet lines from SN 1006. The He I/H-alpha and He I/He II flux ratios also indicate low equilibration. Furthermore, our models match the observations for mostly ionized (~ 90%) preshock H and mostly neutral (>~ 70%) preshock He, respectively. We conclude that the high H ionization fraction cannot be explained by either photoionization from the reverse shock or relic ionization from EUV photons released in the 1006 A.D. supernova. The most plausible explanation appears to be photoionization from the Galactic Lyman continuum.



rate research

Read More

We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 micron image from MIPS clearly shows faint filamentary emission along the northwest rim of the remnant shell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 micron emission traces the Balmer filaments almost perfectly, but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lower -- a relic effect from an earlier epoch when the shock was encountering a lower density -- but higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the IRS instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium is lower than that expected for the Galactic ISM -- as has also been observed in the analysis of IR emission from other SNRs but whose cause remains unclear. As with other SN Ia remnants, SN 1006 shows no evidence for dust grain formation in the supernova ejecta.
We report the first measurement of proper motions in the SN1006 remnant (G327.6+14.6) based entirely on digital images. CCD images from three epochs spanning a period of 11 years are used: 1987 from Las Campanas, and 1991 and 1998 from CTIO. Measuring the shift of delicate Balmer filaments along the northwest rim of the remnant, we obtain proper motions of 280 +/- 8 mas/yr along the entire length where the filaments are well defined, with little systematic variation along the filaments. We also report very deep Halpha imaging observations of the entire remnant that clearly show very faint emission surrounding almost the entire shell, as well as some diffuse emission regions in the (projected) interior. Combining the proper motion measurement with a recent measurement of the shock velocity based on spectra of the same filaments by Ghavamian et al. leads to a distance of 2.17 +/- 0.08 kpc to SN1006. Several lines of argument suggest that SN1006 was a Type Ia event, so the improved distance measurement can be combined with the peak luminosity for SNeIa, as determined for events in galaxies with Cepheid-based distances, to calculate the apparent brightness of the spectacular event that drew wide attention in the eleventh century. The result, V_max = -7.5 =/- 0.4, lies squarely in the middle of the wide range of estimates based on the historical observations.
A point X-ray source located 9 arcmin northeast of the center of SN~1006 has been spectroscopically identified as a background QSO, with a redshift of 0.335. The object is moderately bright, with magnitude V=18.3. If its ultraviolet spectrum is typical of low-z quasars, this object will be a second (after the Schweizer-Middleditch star) source to use for absorption spectroscopy of material within SN 1006. Absorption spectra provide a unique probe for unshocked ejecta within this supernova remnant, and can possibly solve the long-standing problem of missing iron in the remnants of Type Ia supernovae.
108 - Ralph Neuhaeuser 2016
The recently published Yemeni observing report about SN 1006 from al-Yamani clearly gives AD 1006 Apr $17 pm 2$ (mid-Rajab 396h) as first observation date. Since this is about 1.5 weeks earlier than the otherwise earliest reports (Apr 28 or 30) as discussed so far, we were motivated to investigate an early sighting in more depth. We searched for additional evidences from other areas like East Asia and Europe. We found that the date given by al-Yamani is fully consistent with other evidence, including: (a) SN 1006 rose several times half an hour after sunset (al-Yamani), which is correct for the location of Sana in Yemen for the time around Apr 17, but it would not be correct for late Apr or early May; (b) the date (3rd year, 3rd lunar month, 28th day wuzi, Ichidai Yoki) for an observation of a guest star in Japan is inconsistent (there is no day wuzi in that lunar month), but may be dated to Apr 16 by reading wuwu date rather than a wuzi date; (c) there is observational evidence that SN 1006 was observed in East Asia early or mid April; for the second half of April, a bad weather (early monsoon) period is not unlikely -- there is a lack of night reports; (d) the observer in St. Gallen reported to have seen SN 1006 for three months, which must have ended at the very latest on AD 1006 Jul 10, given his northern location, so that his observations probably started in April. We conclude that the correctly reported details give quite high confidence in the fully self-consistent report of al-Yamani, so that the early discovery date should be considered seriously.
60 - Wafiq Rada 2015
We present two Arabic texts of historic observations of supernova SN 1006 from Yemen as reported by al-Yamani and Ibn al-Dayba (14th to 16th century AD). An English translation of the report by the latter was given before (Stephenson & Green 2002), but the original Arabic text was not yet published. In addition, we present for the first time the earlier report, also from Yemen, namely by al-Yamani in its original Arabic and with our English translation. It is quite obvious that the report by Ibn al-Dayba is based on the report by al-Yamani (or a common source), but the earlier report by al-Yamani is more detailed and in better (Arabic) language. We discuss in detail the dating of these observations. The most striking difference to other reports about SN 1006 is the apparent early discovery in Yemen in the evening of 15th of Rajab of the year 396h (i.e. AD 1006 Apr 17 pm 2 on the Julian calendar), as reported by both al-Yamani and Ibn al-Dayba. i.e. about 1.5 weeks earlier than the otherwise earliest known reports. We also briefly discuss other information from the Yemeni reports on brightness, light curve, duration of visibility, location, stationarity, and color.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا