Do you want to publish a course? Click here

Chandra HRC and HST observations of NGC6240: resolving the AGN and Starburst

113   0   0.0 ( 0 )
 Added by Paulina Lira
 Publication date 2002
  fields Physics
and research's language is English
 Authors P.Lira




Ask ChatGPT about the research

We present high spatial resolution X-ray Chandra HRC and HST WFPC2 Halpha observations of the prototypical infrared luminous galaxy NGC6240. The central region of this system shows a remarkably complex morphology, with filaments and loops observed in the optical and X-rays. The total X-ray luminosity is dominated by the extended emission. Both nuclei are clearly detected in the HRC image and both appear to be extended. The energetics of the nuclei imply that the southern nucleus is the more plausible counterpart to the obscured AGN. The overall SED of the galaxy is in good agreement with a blend of starburst and AGN components which have similar bolometric luminosities, L_bol ~ 5e45 ergs/s, with the starburst dominating the observed continuum in the near-IR (K-band), optical and soft X-ray bands.



rate research

Read More

Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR dataset, comprised of three ~165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC 253 for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and VLBA monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within 100 of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy - dominated by the off-nuclear ULX and nuclear sources, which are also likely ULXs - falls steeply (photon index >~ 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the {gamma}-ray emission detected with Fermi and H.E.S.S. If NGC 253 is typical of starburst galaxies at higher redshift, their contribution to the E > 10 keV cosmic X-ray background is < 1%.
Reliably identifying active galactic nuclei (AGNs) in dwarf galaxies is key to understanding black hole demographics at low masses and constraining models for black hole seed formation. Here we present Chandra X-ray Observatory observations of eleven dwarf galaxies that were chosen as AGN candidates using Wide-field Infrared Survey Explorer (WISE) mid-infrared (mid-IR) color-color selection. Hubble Space Telescope images are also presented for ten of the galaxies. Based on Sloan Digital Sky Survey spectroscopy, six galaxies in our sample have optical evidence for hosting AGNs and five are classified as star-forming. We detect X-ray point sources with luminosities above that expected from X-ray binaries in the nuclei of five of the six galaxies with optical evidence of AGNs. However, the X-ray emission from these AGNs is generally much lower than expected based on AGN scaling relations with infrared and optical tracers. We do not find compelling evidence for AGNs in the five optically-selected star-forming galaxies despite having red mid-IR colors. Only two are detected in X-rays and their properties are consistent with stellar-mass X-ray binaries. Based on this multiwavelength study, we conclude that two-color mid-IR AGN diagnostics at the resolution of WISE cannot be used to reliably select AGNs in optically-star-forming dwarf galaxies. Future observations in the infrared with the James Webb Space Telescope offer a promising path forward.
To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. NW of the cluster, $sim 0.7$ Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the ICM from the direction of a galaxy filament to the SE. We detect a density discontinuity NNE of this core which we speculate is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100-300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this AGN leads into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot $gtrsim 20$ keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.
We present the first results from an X-ray and optical survey of a sample of AGN radio jets with Chandra and HST. We focus here on the first six sources observed at X-rays, in four of which a bright X-ray jet was detected for the first time. In three out of four cases optical emission from the jet is also detected in our HST images. We compare the X-ray morphology with the radio as derived from improved processing of archival VLA data and we construct spectral energy distributions (SED) for the most conspicuous emission knots. In most cases the SEDs, together with the similarity of the X-ray and radio morphologies, favor an inverse Compton origin of the X-rays. The most likely origin of the seed photons is the Cosmic Microwave Background, implying the jets are still relativistic on kiloparsec scales. However, in the first knot of the PKS 1136-135 jet, X-rays are likely produced via the synchrotron process. In all four cases bulk Lorentz factors of a few are required. The radio maps of the two jets not detected by either Chandra or HST suggest that they are less beamed at large scales than the other four detected sources. Our results demonstrate that, at the sensitivity and resolution of Chandra, X-ray emission from extragalactic jets is common, yielding essential information on their physical properties.
109 - R. M. Sambruna 2007
This paper presents multiwavelength imaging and broad-band spectroscopy of the relativistic jets in the two nearby radio galaxies 3C 371 and PKS 2201+044, acquired with Chandra, HST, VLA, and Merlin. Radio polarization images are also available. The two sources stand out as intermediate between FRIs and FRIIs; their cores are classified as BL Lacs, although broad and narrow optical emission lines were detected at times. The multiwavelength images show jet morphologies with the X-ray emission peaking closer to the nucleus than the longer wavelengths. The jets are resolved at all wavelengths in a direction perpendicular to the jet axis. The jets SEDs are consistent with a single spectral component from radio to X-rays, interpreted as synchrotron emission. The SEDs show a progressive softening from the inner to the outer regions of the jet, indicating that the electron break energy moves to lower energies with distance from the core. Overall, the X-ray and multiwavelength properties of the jets of 3C 371 and PKS 2201+044 appear intermediate between those of FRIs and FRIIs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا