Hard Pomeron Enhanced Cascade Production and Flux Shadowing in High-Energy Neutrino Astrophysics


Abstract in English

Various implications of new, non-perturbative pomeron inspired enhancement of small-x neutrino-nucleon structure functions for high-energy neutrino astrophysics are discussed. At x larger than 10^{-5} these functions are given by perturbative QCD, while at lower x they are determined by a specific generalization of F_2^{ep}(x,Q^2) description, proposed by A. Donnachie and P. V. Landshoff (their two-component model comprises hard and soft pomerons), to neutrino-nucleon scattering case. We found that i) such enhancement causes the most rapid growth of neutrino-nucleon cross-sections at high energies, ii) pomeron effects may be perceptible in the rates of neutrino induced events in future giant detectors and iii) the rate of high-energy neutrino flux evolution (due to absorption (CC+NC) and regeneration (NC)) on its pass through a large column depth of matter may be subjected to additional influence of hard pomeron. Solving transport equations for the initially power-law decreasing neutrino spectra, we have evaluated shadow factors for several column depths and spectrum indices. The results are compared with analogous calculations, performed within a trivial small-x extrapolation of structure functions. Hard pomeron enhanced high-energy shadow factors are found to be many orders of magnitude lower than those obtained within ordinary perturbative QCD.

Download