Do you want to publish a course? Click here

Recent CHANDRA and XMM observations of two very different galaxy clusters: RBS797 and CL 0939+4713

65   0   0.0 ( 0 )
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

RBS797 and CL 0939+4713 are two intermediate red-shift clusters ($z=0.35-0.41$). They have very different morphologies but both show surprisingly interesting structures. RBS797 looks relaxed, with an almost circular morphology; a CHANDRA observation of this cluster has revealed two deep depressions in the X-ray emission near the core. CL 0939+4713 has instead an irregular morphology with evident substructures which seem to be in the process of merging.



rate research

Read More

We present an XMM observation of the distant galaxy cluster CL 0939+4713. The X-ray image shows pronounced substructure, with two main subclusters forming the cluster core. This is an indication that the cluster is a dynamically young system. This conclusion is supported by the temperature distribution: a hot region is found between the two main subclusters indicating that they are at the beginning of a major merger, and that they will collide in a few hundreds of Myr. The intra-cluster gas of CL 0939+4713 shows inhomogeneities in the metal distribution, with the optically richer subcluster having a higher metallicity.
107 - P. Mazzotta 2004
Theoretical studies of the physical processes in clusters of galaxies are mainly based on the results of numerical simulations, which in turn are often directly compared to X-ray observations. Although trivial in principle, these comparisons are not always simple. We show that the projected spectroscopic temperature of clusters obtained from X-ray observations is always lower than the emission-weighed temperature. This bias is related to the fact that the emission-weighted temperature does not reflect the actual spectral properties of the observed source. This has implications for the study of thermal structures in clusters, especially when strong temperature gradients, like shock fronts, are present. In real observations shock fronts appear much weaker than what is predicted by emission-weighted temperature maps. We propose a new formula, the spectroscopic-like temperature function that better approximates the spectroscopic temperature, making simulations more directly comparable to observations
87 - P. Mazzotta 2004
Theoretical studies of the physical processes guiding the formation and evolution of galaxies and galaxy clusters in the X-ray are mainly based on the results of numerical hydrodynamical N-body simulations, which in turn are often directly compared to X-ray observations. Although trivial in principle, these comparisons are not always simple. We demonstrate that the projected spectroscopic temperature of thermally complex clusters obtained from X-ray observations is always lower than the emission-weighed temperature, which is widely used in the analysis of numerical simulations. We show that this temperature bias is mainly related to the fact that the emission-weighted temperature does not reflect the actual spectral properties of the observed source. This has important implications for the study of thermal structures in clusters, especially when strong temperature gradients, like shock fronts, are present. Because of this bias, in real observations shock fronts appear much weaker than what is predicted by emission-weighted temperature maps, and may even not be detected. This may explain why, although numerical simulations predict that shock fronts are a quite common feature in clusters of galaxies, to date there are very few observations of objects in which they are clearly seen. To fix this problem we propose a new formula, the spectroscopic-like temperature function, and show that, for temperature larger than 3 keV, it approximates the spectroscopic temperature better than few per cent, making simulations more directly comparable to observations.
The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters.
Cosmological constraints from clusters rely on accurate gravitational mass estimates, which strongly depend on cluster gas temperature measurements. Therefore, systematic calibration differences may result in biased, instrument-dependent cosmological constraints. This is of special interest in the light of the tension between the Planck results of the primary temperature anisotropies of the CMB and Sunyaev-Zeldovich plus X-ray cluster counts analyses. We quantify in detail the systematics and uncertainties of the cross-calibration of the effective area between five X-ray instruments, EPIC-MOS1/MOS2/PN onboard XMM-Newton and ACIS-I/S onboard Chandra, and the influence on temperature measurements. Furthermore, we assess the impact of the cross calibration uncertainties on cosmology. Using the HIFLUGCS sample, consisting of the 64 X-ray brightest galaxy clusters, we constrain the ICM temperatures through spectral fitting in the same, mostly isothermal, regions and compare them. Our work is an extension to a previous one using X-ray clusters by the IACHEC. Performing spectral fitting in the full energy band we find that best-fit temperatures determined with XMM-Newton/EPIC are significantly lower than Chandra/ACIS temperatures. We demonstrate that effects like multitemperature structure and different relative sensitivities of the instruments at certain energy bands cannot explain the observed differences. We conclude that using XMM-Newton/EPIC, instead of Chandra/ACIS to derive full energy band temperature profiles for cluster mass determination results in an 8% shift towards lower OmegaM values and <1% shift towards higher sigma8 values in a cosmological analysis of a complete sample of galaxy clusters. Such a shift is insufficient to significantly alleviate the tension between Planck CMB anisotropies and SZ plus XMM-Newton cosmological constraints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا