No Arabic abstract
We present the distribution of a statistical sample of nearby galaxies in the k-space (k1 ~ log M, k2 ~ log Ie, k3 ~ log M/L). Our study is based on near-IR (H-band: lambda = 1.65 micron) observations, for the first time comprising early- and late-type systems. Our data confirm that the mean effective dynamical mass-to-light ratio M/L of the E+S0+S0a galaxies increases with increasing effective dynamical mass M, as expected from the existence of the Fundamental Plane relation. Conversely, spiral and Im/BCD galaxies show a broad distribution in M/L with no detected trend of M/L with M, the former galaxies having M/L values about twice larger than the latter, on average. For all the late-type galaxies, the M/L increases with decreasing effective surface intensity Ie, consistent with the existence of the Tully--Fisher relation. These results are discussed on the basis of the assumptions behind the construction of the k-space and their limitations. Our study is complementary to a previous investigation in the optical (B-band: lambda = 0.44 micron) and allows us to study wavelength-dependences of the galaxy distribution in the k-space. As a first result, we find that the galaxy distribution in the k1--k2 plane reproduces the transition from bulge-less to bulge-dominated systems in galaxies of increasing dynamical mass. Conversely, it appears that the M/L of late-types is higher (lower) than that of early-types with the same M in the near-IR (optical). The origins of this behaviour are discussed in terms of dust attenuation and star formation history.
We present near-infrared H-band (1.65micron) observations and surface brightness profile decompositions for 75 faint (13.5 < m_p < 18.5) galaxies, primarily taken among dwarf Ellipticals members of the Virgo cluster. We model their surface brightness profiles with a de Vaucouleurs (D), exponential (E), mixed (bulge+disk or M) or truncated (T) law, and we derive for each galaxy the H band effective surface brightness (mu_e) and effective radius (r_e), the asymptotic total magnitude H_T and the light concentration index C_31. Combining the present data with those previously obtained by our group (1157 objects) we analyze the NIR properties of a nearly complete sample, representative of galaxies of all morphological types, spanning 4 decades in luminosity. We confirm our earlier claim that the presence of cusps and extended haloes in the light profiles (C_31>5) is a strong, non-linear function of the total luminosity. We also find that: i) among dEs and dS0s galaxies D profiles are absent; 50% of the decompositions are of type M, the remaining being of type E or T. ii) Less than 50% of the giant elliptical galaxies have pure D profiles, the majority being represented by M profiles. iii) Most giant galaxies (from elliptical to Sb) have M profiles. iv) Most of late type spirals (Scd to BCD) have either E or T profiles. v) The type of decomposition is a strong function of the total H band luminosity, independent of the Hubble classification: the fraction of type E decompositions decreases with increasing luminosity, while those of type M increase with luminosity. Pure D profiles are absent in the low luminosity range L_H<10^10 solar and become dominant above 10^11 solar, while T profiles are present only among low luminosity galaxies.
As a result of a systematic NIR H-band (1.65 micron) imaging survey of normal galaxies in the local universe, we are able to measure in a highly homogeneous way photometric and structural properties for a sample of 1143 galaxies. We base our analysis on a quantitative structural parameter, the concentration index C_31, instead of relying on the galaxies morphological classification. The C_31 parameter provides a model independent, quantitative and continuous characterization of the light distribution within galaxies, and it is thus to be preferred to either the Hubble type or a parameter like the bulge-to-disk or bulge-to-total light ratio. We find that galaxies can be completely described by three parameters, namely: a scale parameter (the H-band luminosity), a shape parameter (the concentration index C_31) and a colour parameter (e.g. the B-H colour). At low luminosity dEs and dIs, having similar C_31, are colour-discriminated, while at very high luminosity different C_31 discriminate S0s from Scs, otherwise undistinguishable on the basis of their colour. A single, monotonic relation exists between luminosity and mu_e in the H-band, as opposed to the two separate regimes that are generally observed in the B-band. As NIR luminosity traces quite accurately the galaxy mass distribution, this relation re-enforces the indication in favour of a scale-dependent mass collapse mechanism which produces higher surface-brightness and more centrally peaked galaxies with increasing mass. However, the presence of high-luminosity low-C_31 galaxies hints at other machanisms and physical properties (such as angular momentum) playing an important role in galaxy formation. (abridged)
We analyse the structural and dynamical properties of a sample of 324 nearby elliptical and dwarf elliptical galaxies observed during an extensive NIR survey in H-band (1.65 micron). The Fundamental Plane (FP) is determined and a significant tilt is assessed. The origins of such a tilt are investigated by means of a spherically symmetric, isotropic pressure supported dynamical model relying on the observed surface brightness profiles. The systematic variation of the shape coefficient converting the measured central velocity dispersion $ sigma_0$ into the virial rms velocity $ sigma_{rms}$ is found to be the main cause of the tilt, due to aperture effects. Moreover the ratio between the dynamical mass $M_{dyn}$ and the total H-band luminosity $L_H$ turns out to be roughly constant along the luminosity sequence of ellipticals: H-band luminosity is therefore a reliable and cheap estimator of the dynamical mass of the Es.
We report a search for charmless hadronic decays of charged $B$ mesons to the final states $K^{0}_{S} K^{0}_{S} K^{pm}$ and $K^{0}_{S} K^{0}_{S} pi^{pm}$ . The results are based on a $711 {fb}^{-1}$ data sample that contains $772 times 10^6$ $B bar{B}$ pairs, and was collected at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^{+}e^{-}$ collider. For $B^{pm} to K^{0}_{S} K^{0}_{S} K^{pm}$ decays, the measured branching fraction and direct $CP$ asymmetry are $[10.64pm0.49(stat)pm 0.44(syst)]times10^{-6}$ and [$-0.6pm3.9(stat)pm 3.4(syst)$] %, respectively. In the absence of a statistically significant signal for $B^{pm}to K^{0}_{S} K^{0}_{S} pi^{pm}$, we set the 90 % confidence-level upper limit on its branching fraction at $1.14 times 10^{-6}$.
We present K-band imaging of fields around 30 strong CaII absorption line systems, at 0.7<z<1.1, three of which are confirmed Damped Lyman-alpha systems. A significant excess of galaxies is found within 60 (~50kpc) from the absorber line-of-sight. The excess galaxies are preferentially luminous compared to the population of field galaxies. A model in which field galaxies possess a luminosity-dependent cross-section for CaII absorption of the form (L/L*)^0.7 reproduces the observations well. The luminosity-dependent cross-section for the CaII absorbers appears to be significantly stronger than the established (L/L*)^0.4 dependence for MgII absorbers. The associated galaxies lie at large physical distances from the CaII-absorbing gas; we find a mean impact parameter of 24kpc (H0=70kmsMpc). Combined with the observed number density of CaII absorbers the large physical separations result in an inferred filling factor of only ~10 per cent. The physical origin of the strong CaII absorption remains unclear, possible explanations vary from very extended disks of the luminous galaxies to associated dwarf galaxy neighbours, remnants of outflows from the luminous galaxies, or tidal debris from cannibalism of smaller galaxies.