Do you want to publish a course? Click here

Systematic Molecular Differentiation in Starless Cores

229   0   0.0 ( 0 )
 Added by Mario Tafalla
 Publication date 2001
  fields Physics
and research's language is English
 Authors M. Tafalla




Ask ChatGPT about the research

(Abridged) We present evidence that low-mass starless cores, the simplest units of star formation, are systematically differentiated in their chemical composition. Molecules including CO and CS almost vanish near the core centers, where the abundance decreases by one or two orders of magnitude. At the same time, N2H+ has a constant abundance, and the fraction of NH3 increases toward the core center. Our conclusions are based on a study of 5 mostly-round starless cores (L1498, L1495, L1400K, L1517B, and L1544), which we have mappedin C18O(1-0), C17O(1-0), CS(2-1), C34S(2-1), N2H+(1-0), NH3(1,1) and (2,2), and the 1.2 mm continuum. For each core we have built a model that fits simultaneously the radial profile of all observed emission and the central spectrum for the molecular lines. The observed abundance drops of CO and CS are naturally explained by the depletion of these molecules onto dust grains at densities of 2-6 10^4 cm-3. N2H+ seems unaffected by this process up to densities of several 10^5, while the NH3 abundance may be enhanced by reactions triggered by the disappearance of CO from the gas phase. With the help of our models, we show that chemical differentiation automatically explains the discrepancy between the sizes of CS and NH3 maps, a problem which has remained unexplained for more than a decade. Our models, in addition, show that a combination of radiative transfer effects can give rise to the previously observed discrepancy in the linewidth of these two tracers. Although this discrepancy has been traditionally interpreted as resulting from a systematic increase of the turbulent linewidth with radius, our models show that it can arise in conditions of constant gas turbulence.



rate research

Read More

275 - P. Frau 2011
We used the new IRAM 30-m FTS backend to perform an unbiased ~15 GHz wide survey at 3 mm toward the Pipe Nebula young diffuse starless cores. We found an unexpectedly rich chemistry. We propose a new observational classification based on the 3 mm molecular line emission normalized by the core visual extinction (Av). Based on this classification, we report a clear differentiation in terms of chemical composition and of line emission properties, which served to define three molecular core groups. The diffuse cores, Av<~15, show poor chemistry with mainly simple species (e.g. CS and CCH). The oxo-sulfurated cores, Av~15--22, appear to be abundant in species like SO and SO2, but also in HCO, which seem to disappear at higher densities. Finally, the deuterated cores, Av>~22, show typical evolved chemistry prior to the onset of the star formation process, with nitrogenated and deuterated species, as well as carbon chain molecules. Based on these categories, one of the diffuse cores (Core 47) has the spectral line properties of the oxo-sulfurated ones, which suggests that it is a possible failed core.
We report the identification of a sample of potential High-Mass Starless Cores (HMSCs). The cores were discovered by comparing images of the fields containing candidate High-Mass Protostellar Objects (HMPOs) at 1.2mm and mid-infrared (8.3um; MIR) wavelengths. While the HMPOs are detected at both wavelengths, several cores emitting at 1.2mm in the same fields show absorption or no emission at the MIR wavelength. We argue that the absorption is caused by cold dust. The estimated masses of a few 10^2Msun - 10^3 Msun and the lack of IR emission suggests that they may be massive cold cores in a pre-stellar phase, which could presumably form massive stars eventually. Ammonia (1,1) and (2,2) observations of the cores indicate smaller velocity dispersions and lower rotation temperatures compared to HMPOs and UCHII regions suggesting a quiescent pre-stellar stage. We propose that these newly discovered cores are good candidates for the HMSC stage in high-mass star-formation. This sample of cores will allow us to study the high-mass star and cluster formation processes at the earliest evolutionary stages.
The properties of the first-discovered interstellar object (ISO), 1I/2017 (`Oumuamua), differ from both Solar System asteroids and comets, casting doubt on a protoplanetary disk origin. In this study, we investigate the possibility that it formed with a substantial H2 ice component in the starless core of a giant molecular cloud. While interstellar solid hydrogen has yet to be detected, this constituent would explain a number of the ISOs properties. We consider the relevant processes required to build decameter-sized, solid hydrogen bodies and assess the plausibility of growth in various size regimes. Via an energy balance argument, we find that the most severe barrier to formation is the extremely low temperature required for the favorability of molecular hydrogen ice. However, if deposition occurs, we find that the turbulence within starless cores is conducive for growth into kilometer-sized bodies on sufficiently short timescales. Then, we analyze mass loss in the interstellar medium and determine the necessary size for a hydrogen object to survive a journey to the Solar System as a function of ISO age. Finally, we discuss the implications if the H2 explanation is correct, and we assess the future prospects of ISO science. If hydrogen ice ISOs do exist, our hypothesized formation pathway would require a small population of porous, 100 micron dust in a starless core region that has cooled to 2.8K via adiabatic expansion of the surrounding gas and excellent shielding from electromagnetic radiation and cosmic rays.
61 - Eric Keto 2004
We develop a method of analyzing radio frequency spectral line observations to derive data on the temperature, density, velocity, and molecular abundance of the emitting gas. The method incorporates a radiative transfer code with a new technique for handling overlapping hyperfine emission lines within the accelerated lambda iteration algorithm and a heuristic search algorithm based on simulated annnealing. We apply this method to new observations of N_2H^+ in three Lynds clouds thought to be starless cores in the first stages of star formation and determine their density structure. A comparison of the gas densities derived from the molecular line emission and the millimeter dust emission suggests that the required dust mass opacity is about kappa_{1.3mm}=0.04 cm^2/g, consistent with models of dust grains that have opacities enhanced by ice mantles and fluffy aggregrates.
We carry out an ALMA $rm N_2D^+$(3-2) and 1.3~mm continuum survey towards 32 high mass surface density regions in seven Infrared Dark Clouds with the aim of finding massive starless cores, which may be the initial conditions for the formation of massive stars. Cores showing strong $rm N_2D^+$(3-2) emission are expected to be highly deuterated and indicative of early, potentially pre-stellar stages of star formation. We also present maps of these regions in ancillary line tracers, including C$^{18}$O(2-1), DCN(3-2) and DCO$^+$(3-2). Over 100 $rm N_2D^+$ cores are identified with our newly developed core-finding algorithm based on connected structures in position-velocity space. The most massive core has $sim70:M_odot$ (potentially $sim170:M_odot$) and so may be representative of the initial conditions for massive star formation. The existence and dynamical properties of such cores constrain massive star formation theories. We measure the line widths and thus velocity dispersion of six of the cores with strongest $rm N_2D^+$(3-2) line emission, finding results that are generally consistent with virial equilibrium of pressure confined cores.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا