No Arabic abstract
We present molecular line observations of the star-forming cloud around RNO6 along with a newly discovered nearby molecular cloud that we name RNO6NW. Both clouds display striking similarities in their cometary structures and overall kinematics. By using 13CO line observations, we estimate that these clouds have similar sizes (~4.5 pc) and masses (~200 solar masses). Both molecular clouds RNO6 and RNO6NW are active in star formation. From new high resolution near-IR narrowband images, we confirm that RNO6 hosts an embedded IR cluster that includes a Herbig Be star. A conspicuous H2 filament is found to delineate the dense cometary head of the globule. RNO6NW hosts at least two IR sources and a bipolar molecular outflow of ~0.9 pc of length and ~0.5 solar masses. We show that the cometary structure of both clouds has been created by the UV radiation from numerous OB stars lying ~1.5 degree to the north. Such OB stars are associated with the double cluster h and chi Persei, and are probably members of the PerOB1 association. Thus star formation inside these clouds has been very likely triggered by the Radiation Driven Implosion (RDI) mechanism. From comparison to RDI theoretical models, we find that the similar kinematics and morphology of both clouds is well explained if they are at a re-expansion phase. Triggered sequential star formation also explains the observed spatial distribution of the members of the near-IR cluster inside the RNO6 cloud, and the morphology of the H2 filament. We conclude that the RNO6 and RNO6NW clouds are high-mass counterparts to the cometary globules of smaller masses which have been studied up to now. Thus our observations demonstrate that the RDI mechanism can produce, not only low mass stars in small globules, but also intermediate mass stars and clusters in massive clouds.
We present blue optical spectra of 92 members of h and chi Per obtained with the WIYN telescope at Kitt Peak National Observatory. From these spectra, several stellar parameters were measured for the B-type stars, including V sin i, T_eff, log g_polar, M_star, and R_star. Stromgren photometry was used to measure T_eff and log g_polar for the Be stars. We also analyze photometric data of cluster members and discuss the near-to-mid IR excesses of Be stars.
In order to study the stellar population and possible substructures in the outskirts of Double Cluster $h$ and $chi$ Persei, we investigate using the GAIA DR2 data a sky area of about 7.5 degrees in radius around the Double Cluster cores. We identify member stars using various criteria, including their kinematics (viz, proper motion), individual parallaxes, as well as photometric properties. A total of 2186 member stars in the parameter space were identified as members. Based on the spatial distribution of the member stars, we find an extended halo structure of $h$ and $chi$ Persei, about 6 - 8 times larger than their core radii. We report the discovery of filamentary substructures extending to about 200 pc away from the Double Cluster. The tangential velocities of these distant substructures suggest that they are more likely to be the remnants of primordial structures, instead of a tidally disrupted stream from the cluster cores. Moreover, the internal kinematic analysis indicates that halo stars seems to be experiencing a dynamic stretching in the RA direction, while the impact of the core components is relatively negligible. This work also suggests that the physical scale and internal motions of young massive star clusters may be more complex than previously thought.
Projected rotational velocities have been measured for 216 B0--B9 stars in the rich, dense h and chi Persei double cluster, and compared with the distribution of rotational velocities for a sample of field stars having comparable ages and masses. For stars that are relatively little evolved from their initial locations on the Zero Age Main Sequence (3-5 solar masses) the mean vsini measured for the h and chi Per sample is slightly more than 2 times larger than the mean determined for field stars of comparable mass, and the cluster and field vsini distributions differ with a high degree of significance. For somewhat more evolved stars with masses in the range 5-9 solar masses, the mean vsini in h and chi Per is 1.5 times that of the field; the vsini distributions differ as well, but with a lower degree of statistical significance. For stars that have evolved significantly from the ZAMS (those with masses in the range 9-15 solar masses), the cluster and field star means and distributions are only slightly different. We argue that both the higher rotation rates and the pattern of rotation speeds as a function of mass that differentiate main sequence B stars in h and chi Per from their field analogs were likely imprinted during the star formation process. We speculate that these differences may reflect the effects of the higher accretion rates that theory suggests are characteristic of regions that give birth to dense clusters, namely: (a) higher initial rotation speeds; (b) higher initial radii along the stellar birthline, resulting in greater spinup between the birthline and the ZAMS; and (c) a more pronounced maximum in the birthline radius-mass relationship that results in differentially greater spinup for stars that become mid- to late- B stars on the ZAMS.
Recent high spatial and spectral resolution investigations of the diffuse interstellar medium (ISM) have found significant evidence for small-scale variations in the interstellar gas on scales less than or equal to 1 pc. To better understand the nature of small-scale variations in the ISM, we have used the KPNO WIYN Hydra multi-object spectrograph, which has a mapping advantage over the single-axis, single-scale limitations of studies using high proper motion stars and binary stars, to obtain moderate resolution (~12 km/s) interstellar Na I D absorption spectra of 172 stars toward the double open cluster h and Chi Persei. All of the sightlines toward the 150 stars with spectra that reveal absorption from the Perseus spiral arm show different interstellar Na I D absorption profiles in the Perseus arm gas. Additionally, we have utilized the KPNO Coude Feed spectrograph to obtain high-resolution (~3 km/s) interstellar Na I D absorption spectra of 24 of the brighter stars toward h and Chi Per. These spectra reveal an even greater complexity in the interstellar Na I D absorption in the Perseus arm gas and show individual components changing in number, velocity, and strength from sightline to sightline. If each of these individual velocity components represents an isolated cloud, then it would appear that the ISM of the Perseus arm gas consists of many small clouds. Although the absorption profiles vary even on the smallest scales probed by these high-resolution data (~30;~0.35pc), our analysis reveals that some interstellar Na I D absorption components from sightline to sightline are related, implying that the ISM toward h and Chi Per is probably comprised of sheets of gas in which we detect variations due to differences in the local physical conditions of the gas.
We analyze 8 sources with strong mid-infrared excesses in the 13 Myr-old double cluster h and chi Persei. New optical spectra and broadband SEDs (0.36-8 mu_m) are consistent with cluster membership. We show that material with T ~ 300-400 K and Ld/Lstar ~ 10^-4-10^-3 produces the excesses in these sources. Optically-thick blackbody disk models - including those with large inner holes - do not match the observed SEDs. The SEDs of optically-thin debris disks produced from terrestrial planet formation calculations match the observations well. Thus, some h and chi Persei stars may have debris from terrestrial zone planet formation.