Do you want to publish a course? Click here

Synthetic Color-Magnitude Diagrams for omega Centauri and Other Massive Globular Clusters with Multiple Populations

117   0   0.0 ( 0 )
 Added by Chang H. Ree
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have constructed synthetic color-magnitude diagrams (CMDs) for omega Cen and other massive globular clusters with apparently peculiar CMD morphology. Our population models, which adopt the most up-to-date input physics and parameters, show that the observed CMD of omega Cen can be reproduced by adopting (1) multimodal metallicity distribution function as derived from the observed color distribution of red-giant-branch (RGB) stars, and (2) an internal age-metallicty relation among the populations therein. Similar results were obtained for other massive globular clusters with bimodal horizontal-branches (HBs). In particular, we found that the peculiar CMD morphology (broad RGB, bimodal HB) and properties of RR Lyrae stars observed in NGC 6388 and NGC 6441 can be reproduced by the composite of two distinct populations with mild internal age-metallicity relations. This suggests that these clusters, as well as omega Cen, may represent the relicts of disrupted dwarf galaxies.



rate research

Read More

We report new HST/WFPC2 photometry for 10 globular clusters (GC) in M31 observed in F5555W(V) and F814W(I). Additionally we have reanalyzed HST archival data of comparable quality for 2 more GCs. Extraordinary care is taken to account for the effects of blended stellar images and required field subtraction. We thus reach 1 mag fainter than the horizontal branch (HB) even in unfavorable cases. We present the color-magnitude diagrams (CMDs) and discuss their main features also in comparison with the properties of the Galactic GCs. This analysis is augmented with CMDs previously obtained and discussed by Fusi Pecci et al. (1996) on 8 other M31 clusters. We report the following significant results: 1. The locus of the red giant branches give reliable metallicity determinations which compare generally very well with ground-based integrated spectroscopic and photometric measures, as well as giving good reddening estimates. 2. The HB morphologies show the same behavior with metallicity as the Galactic GCs, with indications that the 2nd-parameter effect can be present in some GCs of our sample. However, at [Fe/H] ~ -1.7 we observe a number of GCs with red HB morphology such that the HB type versus [Fe/H] relation is offset from the MW and resembles that of the Fornax dwarf spheroidal galaxy. One explanation for the offset is that they are younger than their MW counterparts by 1-2 Gyr. 3. The Mv(HB)-[Fe/H] relationship has been determined and the slope (~0.20) is very similar to the values derived from RR Lyrae stars in the MW and the LMC. The zero-point of this relation based on the assumed distance modulus (m-M)o(M31)=24.47+/-0.03 is consistent with (m-M)o(LMC)=18.55.
We present GALEX data for 44 Galactic globular clusters obtained during 3 GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic globular clusters ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV color-magnitude diagrams of old Galactic globular clusters. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post core-He burning stars. The main features of UV color-magnitude diagrams of Galactic globular clusters are briefly discussed. We establish the locus of post-core He burning stars in the UV color-magnitude diagram and present a catalog of candidate AGB-manqu e, post early-AGB, and post-AGB stars within our cluster sample.
145 - Sibilla Perina 2009
With the aim of increasing the sample of M31 clusters for which a colour magnitude diagram is available, we searched the HST archive for ACS images containing objects included in the Revised Bologna Catalogue of M31 globular clusters. Sixty-three such objects were found. We used the ACS images to confirm or revise their classification and we obtained useful CMDs for 11 old globular clusters and 6 luminous young clusters. We obtained simultaneous estimates of the distance, reddening, and metallicity of old clusters by comparing their observed field-decontaminated CMDs with a grid of template clusters of the Milky Way. We estimated the age of the young clusters by fitting with theoretical isochrones. For the old clusters, we found metallicities in the range -0.4<=[Fe/H]<=-1.9, that generally agree with existing spectroscopic extimates. At least four of them display a clear blue HB, indicating ages >10 Gyr. All six candidate young clusters are found to have ages <1Gyr. With the present work the total number of M31 GCs with reliable optical CMD increases from 35 to 44 for the old clusters, and from 7 to 11 for the young ones. The old clusters show similar characteristics to those of the MW. We discuss the case of the cluster B407, with a metallicity [Fe/H] ~-0.6 and located at a large projected distance from the centre of M31 and from the galaxy major axis. Metal-rich globulars at large galactocentric distances are rare both in M31 and in the MW. B407, in addition, has a velocity in stark contrast with the rotation pattern shared by the bulk of M31 clusters of similar metallicity. This, along with other empirical evidence, supports the hypothesis that the cluster is physically associated with a substructure in the M31 halo that has been interpreted as the relic of a merging event.
We have performed a large ground-based search for transiting Hot Jupiter planets in the outer regions of the globular clusters 47 Tucanae and omega Centauri. The aim was to help understand the role that environmental effects play on Hot Jupiter formation and survivability in globular clusters. Using the ANU 1m telescope and a 52 X 52 field, a total of 54,000 solar-type stars were searched for transits in both clusters with fully tested transit-finding algorithms. Detailed Monte Carlo simulations were performed to model the datasets and calculate the expected planet yields. Seven planets were expected in 47 Tuc, and five in omega Cen. Despite a detailed search, no planet-like candidates were identified in either cluster. Combined with previous theoretical studies of planet survivability, and the HST null result in the core of 47 Tuc, the lack of detections in the uncrowded outer regions of both clusters indicates that stellar metallicity is the dominant factor inhibiting Hot Jupiter formation in the cluster environment.
142 - A. Bellini 2009
We present a detailed study of the radial distribution of the multiple populations identified in the Galactic globular cluster omega Cen. We used both space-based images (ACS/WFC and WFPC2) and ground-based images (FORS1@VLT and [email protected] ESO telescopes) to map the cluster from the inner core to the outskirts (~20 arcmin). These data sets have been used to extract high-accuracy photometry for the construction of color-magnitude diagrams and astrometric positions of ~900 000 stars. We find that in the inner ~2 core radii the blue main sequence (bMS) stars slightly dominate the red main sequence (rMS) in number. At greater distances from the cluster center, the relative numbers of bMS stars with respect to rMS drop steeply, out to ~8 arcmin, and then remain constant out to the limit of our observations. We also find that the dispersion of the Gaussian that best fits the color distribution within the bMS is significantly greater than the dispersion of the Gaussian that best fits the color distribution within the rMS. In addition, the relative number of intermediate-metallicity red-giant-branch stars which includes the progeny of the bMS) with respect to the metal-poor component (the progeny of the rMS) follows a trend similar to that of the main-sequence star-count ratio N_bMS/N_rMS. The most metal-rich component of the red-giant branch follows the same distribution as the intermediate-metallicity component. We briefly discuss the possible implications of the observed radial distribution of the different stellar components in omega Cen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا