No Arabic abstract
Low dispersion optical spectra have been obtained with the Hobby-Eberly Telescope of 22 very red objects found in early imaging data from the Sloan Digital Sky Survey. The objects are assigned spectral types on the 2MASS system (Kirkpatrick et al. 1999) and are found to range from late M to late L. The red- and near-infrared colors from SDSS and 2MASS correlate closely with each other, and most of the colors are closely related to spectral type in this range; the exception is the (i^* - z^*) color, which appears to be independent of spectral type between about M7 and L4. The spectra suggest that this independence is due to the disappearance of the TiO and VO absorption in the i-band for later spectral types; to the presence of strong Na I and K I absorption in the i-band; and to the gradual disappearance of the 8400 Angstrom absorption of TiO and FeH in the z-band.
We identify seven new ultracool white dwarfs discovered in the Sloan Digital Sky Survey (SDSS). The SDSS photometry, spectra, and proper motions are presented, and additional BVRI data are given for these and other previously discovered ultracool white dwarfs. The observed colors span a remarkably wide range, qualitatively similar to colors predicted by models for very cool white dwarfs. One of the new stars (SDSS J1251+44) exhibits strong collision-induced absorption (CIA) in its spectra, while the spectra and colors of the other six are consistent with mild CIA. Another of the new discoveries (SDSS J2239+00A) is part of a binary system -- its companion is also a cool white dwarf, and other data indicate that the companion exhibits an infrared flux deficiency, making this the first binary system composed of two CIA white dwarfs. A third discovery (SDSS J0310-00) has weak Balmer emission lines. The proper motions of all seven stars are consistent with membership in the disk or thick disk.
Large amount of observational spectroscopic data are recently available from different observational projects, like Sloan Digital Sky Survey. Its become more urgent to identify white dwarfs stars based on data itself i.e. without modelling white dwarf atmospheres. In particular, existing methods of white dwarfs identification presented in Kleinman et al. (2004) and in Eisenstein et al. (2006) did not allow to find all the white dwarfs in examined data. We intend to test various criteria of searching for white dwarf candidates, based on photometric and spectral features.
An extensive sample of M, L and T dwarfs identified in the Sloan Digital Sky Survey (SDSS) has been compiled. The sample of 718 dwarfs includes 677 new objects (629 M dwarfs, 48 L dwarfs) together with 41 that have been previously published. All new objects and some of the previously published ones have new optical spectra obtained either with the SDSS spectrographs or with the Apache Point Observatory 3.5m ARC telescope. Spectral types and SDSS colors are available for all objects; approximately 35% also have near-infrared magnitudes measured by 2MASS or on the Mauna Kea system. We use this sample to characterize the color--spectral type and color--color relations of late type dwarfs in the SDSS filters, and to derive spectroscopic and photometric parallax relations for use in future studies of the luminosity and mass functions based on SDSS data. We find that the (i*-z*) and (i*-J) colors provide good spectral type and absolute magnitude (M_i*) estimates for M and L dwarfs. Our distance estimates for the current sample indicate that SDSS is finding early M dwarfs out to about 1.5 kpc, L dwarfs to approximately 100 pc and T dwarfs to near 20 pc. The T dwarf photometric data show large scatter and are therefore less reliable for spectral type and distance estimation.
The photometric calibration of the Sloan Digital Sky Survey (SDSS) is a multi-step process which involves data from three different telescopes: the 1.0-m telescope at the US Naval Observatory (USNO), Flagstaff Station, Arizona (which was used to establish the SDSS standard star network); the SDSS 0.5-m Photometric Telescope (PT) at the Apache Point Observatory (APO), New Mexico (which calculates nightly extinctions and calibrates secondary patch transfer fields); and the SDSS 2.5-m telescope at APO (which obtains the imaging data for the SDSS proper). In this paper, we describe the Monitor Telescope Pipeline, MTPIPE, the software pipeline used in processing the data from the single-CCD telescopes used in the photometric calibration of the SDSS (i.e., the USNO 1.0-m and the PT). We also describe transformation equations that convert photometry on the USNO-1.0m ugriz system to photometry the SDSS 2.5m ugriz system and the results of various validation tests of the MTPIPE software. Further, we discuss the semi-automated PT factory, which runs MTPIPE in the day-to-day standard SDSS operations at Fermilab. Finally, we discuss the use of MTPIPE in current SDSS-related projects, including the Southern ugriz Standard Star project, the ugriz Open Star Clusters project, and the SDSS extension (SDSS-II).
This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r~22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star-formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1443 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 677 purely-photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat Lambda-CDM cosmology, we determine Omega_M = 0.315 +/- 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7 sigmas.