Do you want to publish a course? Click here

PINOCCHIO and the hierarchical build-up of dark matter haloes

43   0   0.0 ( 0 )
 Added by Pierluigi Monaco
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the ability of PINOCCHIO (PINpointing Orbit-Crossing Collapsed HIerarchical Objects) to predict the merging histories of dark matter (DM) haloes, comparing the PINOCCHIO predictions with the results of two large N-body simulations run from the same set of initial conditions. We focus our attention on quantities most relevant to galaxy formation and large-scale structure studies. PINOCCHIO is able to predict the statistics of merger trees with a typical accuracy of 20 per cent. Its validity extends to higher-order moments of the distribution of progenitors. The agreement is valid also at the object-by-object level, with 70-90 per cent of the progenitors cleanly recognised when the parent halo is cleanly recognised itself. Predictions are presented also for quantities that are usually not reproduced by semi-analytic codes, such as the two-point correlation function of the progenitors of massive haloes and the distribution of initial orbital parameters of merging haloes. For the accuracy of the prediction and for the facility with which merger histories are produced, PINOCCHIO provides a means to generate catalogues of DM haloes which is extremely competitive to large-scale N-body simulations, making it a suitable tool for galaxy formation and large-scale structure studies.



rate research

Read More

169 - Jesus Zavala 2019
The development of methods and algorithms to solve the $N$-body problem for classical, collisionless, non-relativistic particles has made it possible to follow the growth and evolution of cosmic dark matter structures over most of the Universes history. In the best studied case $-$ the cold dark matter or CDM model $-$ the dark matter is assumed to consist of elementary particles that had negligible thermal velocities at early times. Progress over the past three decades has led to a nearly complete description of the assembly, structure and spatial distribution of dark matter haloes, and their substructure in this model, over almost the entire mass range of astronomical objects. On scales of galaxies and above, predictions from this standard CDM model have been shown to provide a remarkably good match to a wide variety of astronomical data over a large range of epochs, from the temperature structure of the cosmic background radiation to the large-scale distribution of galaxies. The frontier in this field has shifted to the relatively unexplored subgalactic scales, the domain of the central regions of massive haloes, and that of low-mass haloes and subhaloes, where potentially fundamental questions remain. Answering them may require: (i) the effect of known but uncertain baryonic processes (involving gas and stars), and/or (ii) alternative models with new dark matter physics. Here we present a review of the field, focusing on our current understanding of dark matter structure from $N$-body simulations and on the challenges ahead.
Virial mass is used as an estimator for the mass of a dark matter halo. However, the commonly used constant overdensity criterion does not reflect the dynamical structure of haloes. Here we analyze dark matter cosmological simulations in order to obtain properties of haloes of different masses focusing on the size of the region with zero mean radial velocity. Dark matter inside this region is stationary, and thus the mass of this region is a much better approximation for the virial mass.
The hierarchical clustering inherent in Lambda-CDM cosmology seems to produce many of the observed characteristics of large-scale structure. But some glaring problems still remain, including the over-prediction (by a factor 10) of the number of dwarf galaxies within the virialized population of the local group. Several secondary effects have already been proposed to resolve this problem. It is still not clear, however, whether the principal solution rests with astrophysical processes, such as early feedback from supernovae, or possibly with as yet undetermined properties of the dark matter itself. In this paper, we carry out a detailed calculation of the dwarf halo evolution incorporating the effects of a hypothesized dark-matter decay, D -> D+l, where D is the unstable particle, D is the more massive daughter particle and l is the other, lighter (or possibly massless) daughter particle. This process preferentially heats the smaller haloes, expanding them during their evolution and reducing their present-day circular velocity. We find that this mechanism can account very well for the factor 4 deficit in the observed number of systems with velocity 10--20 km/s compared to those predicted by the numerical simulations, if dm/m_D ~ 5-7 x 10^{-5}, where dm is the mass difference between the initial and final states. The corresponding lifetime tau cannot be longer than ~30 Gyr, but may be as short as just a few Gyr.
We study the effect of baryons on the abundance of structures and substructures in a Lambda-CDM cosmology, using a pair of high resolution cosmological simulations from the GIMIC project. Both simulations use identical initial conditions, but while one contains only dark matter, the other also includes baryons. We find that gas pressure, reionisation, supernova feedback, stripping, and truncated accretion systematically reduce the total mass and the abundance of structures below ~10^12 solar masses compared to the pure dark matter simulation. Taking this into account and adopting an appropriate detection threshold lowers the abundance of observed galaxies with maximum circular velocities below 100 km/s, significantly reducing the reported discrepancy between Lambda-CDM and the measured HI velocity function of the ALFALFA survey. We also show that the stellar-to-total mass ratios of galaxies with stellar masses of ~10^5 - 10^7 solar masses inferred from abundance matching of the (sub)halo mass function to the observed galaxy mass function increase by a factor of ~2. In addition, we find that an important fraction of low-mass subhaloes are completely devoid of stars. Accounting for the presence of dark subhaloes below 10^10 solar masses further reduces the abundance of observable objects, and leads to an additional increase in the inferred stellar-to-total mass ratio by factors of 2 - 10 for galaxies in haloes of 10^9 - 10^10 solar masses. This largely reconciles the abundance matching results with the kinematics of individual dwarf galaxies in Lambda-CDM. We propose approximate corrections to the masses of objects derived from pure dark matter calculations to account for baryonic effects.
We investigate the role of angular momentum in the clustering of dark matter haloes. We make use of data from two high-resolution N-body simulations spanning over four orders of magnitude in halo mass, from $10^{9.8}$ to $10^{14} h^{-1} text{M}_odot$. We explore the hypothesis that mass accretion in filamentary environments alters the angular momentum of a halo, thereby driving a correlation between the spin parameter $lambda$ and the strength of clustering. However, we do not find evidence that the distribution of matter on large scales is related to the spin of haloes. We find that a halos spin is correlated with its age, concentration, sphericity, and mass accretion rate. Removing these correlations strongly affects the strength of secondary spin bias at low halo masses. We also find that high spin haloes are slightly more likely to be found near another halo of comparable mass. These haloes that are found near a comparable mass neighbour - a textit{twin} - are strongly spatially biased. We demonstrate that this textit{twin bias}, along with the relationship between spin and mass accretion rates, statistically accounts for halo spin secondary bias.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا