No Arabic abstract
HST and ground-based [OII} and [NII] images obtained from 1996 to 1999 reveal the existence of a ionised optical nebula around the symbiotic binary CH Cyg extending out to 5000 A.U. from the central stars. The observed velocity range of the nebula, derived from long-slit echelle spectra, is of 130 km/s. In spite of its complex appearence, the velocity data show that the basic morphology of the inner regions of the optical nebula is that of a bipolar (or conical) outflow extending nearly along the plane of the sky out to some 2000 A.U. from the centre. Even if the extension of this bipolar outflow and its position angle are consistent with those of the radio jet produced in 1984 (extrapolated to the time of our optical imagery), no obvious counterpart is visible of the original, dense radio bullets ejected by the system. We speculate that the optical bipolar outflow might be the remannt of the interaction of the bullets with a relatively dense circumstellar medium.
CH Cygni is a symbiotic star consisting of an M giant and an accreting white dwarf, which is known to be a highly variable X-ray source with a complex, two-component, spectra. Here we report on two Suzaku observations of CH Cyg, taken in 2006 January and May, during which the system was seen to be in a soft X-ray bright, hard X-ray faint state. Based on the extraordinary strength of the 6.4 keV fluorescent Fe K-alpha line, we show that the hard X-rays observed with Suzaku are dominated by scattering.
Although AGN feedback through ionised winds is of great importance in models of AGN/galaxy coevolution, the mass and energy output via these winds, even in the nearby universe, is poorly understood. The issue is complicated by the wide range of ionisation in the winds, which means that multiwavelength observational campaigns are required to obtain the complete picture. In this paper, we use a ~ 160 ks XMM-Newton RGS spectrum to get the most accurate view yet of the ionised outflow (warm absorber) in NGC 7469 as seen in X-rays, finding that there is a wide range of ionisation, with log xi in the range ~ 0.5-3.5 erg cm s^-1, and two main velocity regimes, at 580-720 and 2300 km s^-1, with the highest velocity gas being the least ionised. The total absorbing column density in the X-rays is of order 3 x 10^21 cm^-2. We find that the lowest ionisation phase of the absorber is probably identical with one of the phases of the UV absorber discovered in previous studies. We show that both X-ray and UV absorbers are consistent with an origin near the base of a torus wind, where matter is being launched and accelerated. Calculating the mass outflow rate and kinetic luminosity of all the absorber phases, we demonstrate that the X-ray absorbing gas carries respectively ~ 90% and 95% of the mass and kinetic energy output of the ionised outflow.
The W50/SS433 system is an unusual Galactic outflow-driven object of debatable origin. We have used the Australia Telescope Compact Array (ATCA) to observe a new 198 pointing mosaic, covering $3^circ times 2^circ$, and present the highest-sensitivity full-Stokes data of W50 to date using wide-field, wide-band imaging over a 2 GHz bandwidth centred at 2.1 GHz. We also present a complementary H$alpha$ mosaic created using the Isaac Newton Telescope Photometric H$alpha$ Survey of the Northern Galactic Plane (IPHAS). The magnetic structure of W50 is found to be consistent with the prevailing hypothesis that the nebula is a reanimated shell-like supernova remnant (SNR), that has been re-energised by the jets from SS433. We observe strong depolarization effects that correlate with diffuse H$alpha$ emission, likely due to spatially-varying Faraday rotation measure (RM) fluctuations of $ge48$ to 61 rad m$^{-2}$ on scales $le4.5$ to 6 pc. We also report the discovery of numerous, faint, H$alpha$ filaments that are unambiguously associated with the central region of W50. These thin filaments are suggestive of a SNRs shock emission, and almost all have a radio counterpart. Furthermore, an RM-gradient is detected across the central region of W50, which we interpret as a loop magnetic field with a symmetry axis offset by $approx90^{circ}$ to the east-west jet-alignment axis, and implying that the evolutionary processes of both the jets and the SNR must be coupled. A separate RM-gradient is associated with the termination shock in the Eastern ear, which we interpret as a ring-like field located where the shock of the jet interacts with the circumstellar medium. Future optical observations will be able to use the new H$alpha$ filaments to probe the kinematics of the shell of W50, potentially allowing for a definitive experiment on W50s formation history.
Context. We analyse the line and continuum spectra of the symbiotic system CH Cygni. Aims. To show that the colliding-wind model is valid to explain this symbiotic star at different phases. Methods. Peculiar observed features such as flickering, radio variation, X-ray emission, as well as the distribution of the nebulae and shells throughout the system are investigated by modelling the spectra at different epochs. The models account consistently for shock and photoionization and are constrained by absolute fluxes. Results. We find that the reverse shock between the stars leads to the broad lines observed during the active phases, as well as to radio and hard X-ray emission, while the expanding shock is invoked to explain the data during the transition phases.
Measurements by the U.C. Berkeley Infrared Spatial Interferometer at 11.15 micron have yielded strong evidence for multiple dust shells and/or significant asymmetric dust emission around NML Cyg. New observations reported also include multiple 8-13 micron spectra taken from 1994-1995 and N band (10.2 micron) photometry from 1980-1992. These and past measurements are analyzed and fitted to a model of the dust distribution around NML Cyg. No spherically symmetric single dust shell model is found consistent with both near- and mid-infrared observations. However, a circularly symmetric maximum entropy reconstruction of the 11 micron brightness distribution suggests a double shell model for the dust distribution. Such a model, consisting of a geometrically thin shell of intermediate optical depth ($tau_{11 micron} sim 1.9$) plus an outer shell ($tau_{11 micron} sim 0.33$), is consistent not only with the 11 micron visibility data, but also with near-infrared speckle measurements, the broadband spectrum, and the 9.7 micron silicate feature. The outer shell, or large scale structure, is revealed only by long-baseline interferometry at 11 micron, being too cold ($sim$ 400 K) to contribute in the near-infrared and having no unambiguous spectral signature in the mid-infrared. The optical constants of Ossenkopf, Henning, & Mathis (1992) proved superior to the Draine & Lee (1984) constants in fitting the detailed shape of the silicate feature and broadband spectrum for this object. Recent observations of H$_2$O maser emission around NML Cyg by Richards, Yates, & Cohen (1996) are consistent with the location of the two dust shells and provide further evidence for the two-shell model.