The Las Campanas IR Survey: Early Type Galaxy Progenitors Beyond Redshift One


Abstract in English

(Abridged) We have identified a population of faint red galaxies from a 0.62 square degree region of the Las Campanas Infrared Survey whose properties are consistent with their being the progenitors of early-type galaxies. The optical and IR colors, number-magnitude relation and angular clustering together indicate modest evolution and increased star formation rates among the early-type field population at redshifts between one and two. The counts of red galaxies with $H$ magnitudes between 17 and 20 rise with a slope that is much steeper than that of the total H sample. The surface density of red galaxies drops from roughly 3000 per square degree at H = 20.5, I-H > 3 to ~ 20 per square degree at H = 20, I-H > 5. The V-I colors are approximately 1.5 magnitudes bluer on average than a pure old population and span a range of more than three magnitudes. The colors, and photometric redshifts derived from them, indicate that the red galaxies have redshift distributions adequately described by Gaussians with sigma_z ~ 0.2$ centered near redshift one, with the exception that galaxies having $V-I<1.6$ and $I-H>3$ are primarily in the 1.5 < z < 2 range. We find co-moving correlation lengths of 9-10 Mpc at z ~ 1, comparable to, or larger than, those found for early-type galaxies at lower redshifts. A simple photometric evolution model reproduces the counts of the red galaxies, with only a ~ 30% decline in the underlying space density of early-type galaxies at z ~ 1.2. We suggest on the basis of the colors, counts, and clustering that these red galaxies are the bulk of the progenitors of present day early-type galaxies.

Download