Do you want to publish a course? Click here

The central region of M31 observed with XMM-Newton. II. Variability of the individual sources

105   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a study of the variability of X-ray sources in the central 30 of the nearby Andromeda Galaxy (M31) based on XMM Performance Verification observations. Two observations of this field, with a total exposure time of about 50 ks, were performed in June and December of 2000. We found 116 sources brighter than a limiting luminosity of 6 x 10(35) erg/s (0.3--12 keV, d=760 kpc). For the ~60 brightest sources, we searched for periodic and non-periodic variability; at least 15% of these sources appear to be variable on a time scale of several months. We discovered a new bright transient source ~2.9 from the nucleus in the June observation; this source faded significantly and was no longer detected in December. The behaviour of the object is similar to a handful of Galactic LMXB transients, most of which are supposed to harbor black holes. We detected pulsations with a period of ~865 s from a source with a supersoft spectrum. The flux of this source decreased significantly between the two XMM observations. The detected period is unusually short and points to a rapidly spinning magnetized white dwarf. The high luminosity and transient nature of the source suggest its possible identification with classical or symbiotic nova, some of which were observed earlier as supersoft sources.



rate research

Read More

The archival XMM-Newton data of the central region of M31 were analyzed for diffuse X-ray emission. Point sources with the 0.5--10 keV luminosity exceeding $sim 4 times 10^{35}$ erg s$^{-1}$ were detected. Their summed spectra are well reproduced by a combination of a disk black-body component and a black-body component, implying that the emission mainly comes from an assembly of luminous low-mass X-ray binaries. After excluding these point sources, spectra were accumulated over a circular region of $6arcmin$ (1.2 kpc) centered on the nucleus. In the energy range above 2 keV, these residual spectra are understood mainly as contributions of unresolved faint sources and spill-over of photons from the excluded point sources. There is in addition a hint of a $sim 6.6$ keV line emission, which can be produced by a hot (temperature several keV) thin-thermal plasma. Below 2 keV, the spectra involve three additional softer components expressed by thin-thermal plasma emission models, of which the temperatures are $sim 0.6$, $sim 0.3$, and $sim 0.1$ keV. Their 0.5--10 keV luminosities within 6$arcmin$ are measured to be $sim 1.2 times 10^{38}$ erg s$^{-1}$, $sim 1.6 times 10^{38}$ erg s$^{-1}$, and $sim 4 times 10^{37}$ erg s$^{-1}$ in the order of decreasing temperature. The archival Chandra data of the central region of M31 yielded consistent results. By incorporating different annular regions, all the three softer thermal components were confirmed to be significantly extended. These results are compared with reports from previous studies. A discussion is presented on the origin of each thermal emission component.
(Abridged) We present the results of the systematic survey of X-ray sources in the central region of M31 using the data from XMM-Newton observations performed in the years 2000-2004. The spectral properties and variability of 123 bright X-ray sources with apparent luminosities between ~10^{36} and ~5x10^{38} ergs/s were studied in detail. The spectral distribution of M31 X-ray sources, based on the spectral fitting with a power law model is clearly bimodal with a main peak corresponding to a photon index Gamma ~ 1.75 and a shoulder at Gamma ~ 2.0-2.2 extending to the soft spectral region, and shows clear evolution with source luminosity. The distribution of absorbing columns towards M31 sources derived from spectral analysis has a peak at N_H~1.2x10^{21} cm^{-2} extending up to 1.3x10^{22} cm^{-2}, with an average value of (1.52 +/- 0.02)x10^{21} cm^{-2}. More than 80% of sources observed in two or more observations show significant variability on the time scales of days to years. About 50% of the sources in our sample are spectrally variable. The spectral evolution of a number of sources is correlated with the level of their X-ray flux, while some sources demonstrate complex patterns of evolution on the hardness-intensity diagram. Based on the similarity of the properties of M31 X-ray sources and their Galactic counterparts, we expect most of the X-ray sources in our sample to be accreting binary systems with neutron star and black hole primaries. A total of 44 X-ray sources can be identified as probable X-ray binaries. Combining the results of X-ray analysis with available data at other wavelengths, we classify 7% and 24% of sources in our sample as, respectively, probable black hole and neutron star candidates.
Power density spectra (PDS) that are characteristic of low mass X-ray binaries (LMXBs) have been previously reported for M31 X-ray sources observed by XMM-Newton. However, we have recently discovered that these PDS are false positives resulting from the improper manipulation of non-simultaneous lightcurves. The lightcurves produced by the XMM-Newton Science Analysis Software (SAS) are non-synchronised by default. This affects not only the combination of lightcurves from the three EPIC detectors (MOS1, MOS2 and pn), but also background subtraction in the same CCD. It is therefore imperative that all SAS-generated lightcurves are synchronised by time filtering, even if the whole observation is to be used. We combined simulated lightcurves at various intensities with various offsets and found that the artefact is more dependent on the offset than the intensity. While previous timing results from M31 have been proven wrong, and also the broken power law PDS in NGC 4559 ULX-7, XMM-Newton was able to detect aperiodic variability in just 3 ks of observations of NGC 5408 ULX1. Hence XMM-Newton remains a viable tool for analysing variability in extra-galactic X-ray sources.
We continue the analysis of the dataset of our spectroscopic observation campaign of M31, by deriving simple stellar population properties (age metallicity and alpha-elements overabundance) from the measurement of Lick/IDS absorption line indices. We describe their two-dimensional maps taking into account the dust distribution in M31. 80% of the values of our age measurements are larger than 10 Gyr. The central 100 arcsec of M31 are dominated by the stars of the classical bulge of M31. They are old (11-13 Gyr), metal-rich (as high as [Z/H]~0.35 dex) at the center with a negative gradient outwards and enhanced in alpha-elements ([alpha/Fe]~ 0.28+- 0.01 dex). The bar stands out in the metallicity map, where an almost solar value of [Z/H] (~0.02+-0.01 dex) with no gradient is observed along the bar position angle (55.7 deg) out to 600 arcsec from the center. In contrast, no signature of the bar is seen in the age and [alpha/Fe] maps, that are approximately axisymmetric, delivering a mean age and overabundance for the bar and the boxy-peanut bulge of 10-13 Gyr and 0.25-0.27 dex, respectively. The boxy/peanut-bulge has almost solar metallicity (-0.04+- 0.01 dex). The mass-to-light ratio of the three components is approximately constant at M/LV ~ 4.4-4.7 Msol/Lsol. The disk component at larger distances is made of a mixture of stars, as young as 3-4 Gyr, with solar metallicity and smaller M/LV (~3+-0.1 Msol/Lsol). We propose a two-phase formation scenario for the inner region of M31, where most of the stars of the classical bulge come into place together with a proto-disk, where a bar develops and quickly transforms it into a boxy-peanut bulge. Star formation continues in the bulge region, producing stars younger than 10 Gyr, in particular along the bar, enhancing its metallicity. The disk component appears to build up on longer time-scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا