No Arabic abstract
We present Very Long Baseline Interferometry (VLBI) observations of the high mass X-ray binary LSI+61303, carried out with the European VLBI Network (EVN). Over the 11 hour observing run, performed 10 days after a radio outburst, the radio source showed a constant flux density, which allowed sensitive imaging of the emission distribution. The structure in the map shows a clear extension to the southeast. Comparing our data with previous VLBI observations we interpret the extension as a collimated radio jet as found in several other X-ray binaries. Assuming that the structure is the result of an expansion that started at the onset of the outburst, we derive an apparent expansion velocity of 0.003 c, which, in the context of Doppler boosting, corresponds to an intrinsic velocity of at least 0.4 c for an ejection close to the line of sight. From the apparent velocity in all available epochs we are able to establish variations in the ejection angle which imply a precessing accretion disk. Finally we point out that LSI+61303, like SS433 and Cygnus X-1, shows evidence for an emission region almost orthogonal to the relativistic jet.
The stellar binary system LS I +61303, composed of a compact object in an eccentric orbit around a B0 Ve star, emits from radio up to gamma-ray energies. The orbital modulation of radio spectral index, X-ray, and GeV gamma-ray data suggests the presence of two peaks. This two-peaked profile is in line with the accretion theory predicting two accretion-ejection events for LS I +61303 along the 26.5 d orbit. However, the existing multiwavelength data are not simultaneous. In this paper, we report the results of a campaign covering radio, X-ray, and gamma-ray observations of the system along one single orbit. Our results confirm the two predicted events along the orbit and in addition show that the positions of radio and gamma-ray peaks are coincident with X-ray dips as expected for radio and gamma-ray emitting ejections depleting the X-ray emitting accretion flow. We discuss future observing strategies for a systematic study of the accretion-ejection physical processes in LS I +61303.
Our aim is to show how variable Doppler boosting of an intrinsically variable jet can explain the long-term modulation of 1667 pm 8 days observed in the radio emission of LSI+61303. The physical scenario is that of a conical, magnetized plasma jet having a periodical (P1) increase of relativistic particles, Nrel, at a specific orbital phase, as predicted by accretion in the eccentric orbit of LSI+61303. Jet precession (P2) changes the angle, eta, between jet axis and line of sight, thereby inducing variable Doppler boosting. The problem is defined in spherical geometry, and the optical depth through the precessing jet is calculated by taking into account that the plasma is stratified along the jet axis. The synchrotron emission of such a jet was calculated and we fitted the resulting flux density Smodel(t) to the observed flux density obtained during a 6.5-year monitoring of LSI+61303 by the Green Bank radio interferometer. Our physical model for the system LSI+61303 is not only able to reproduce the long-term modulation in the radio emission, but it also reproduces all the other observed characteristics of the radio source, the orbital modulation of the outbursts, their orbital phase shift, and their spectral index properties. Moreover, a correspondence seems to exist between variations in the ejection angle induced by precession and the rapid rotation in position angle observed in VLBA images. We conclude that the peak of the long-term modulation occurs when the jet electron density is around its maximum and the approaching jet is forming the smallest possible angle with the line of sight. This coincidence of maximum number of emitting particles and maximum Doppler boosting of their emission occurs every 1667 days and creates the long-term modulation observed in LSI+61303.
Observations of the frequencies of different rotational transitions of the methanol molecule have provided the most sensitive probe to date for changes in the proton-to-electron mass ratio, over space and time. Using methanol absorption detected in the gravitational lens system PKS B1830-211, changes in the proton-to-electron ratio over the last 7.5 billion years have been constrained to a fractional change less than 1.1e-07. Molecular absorption systems at cosmological distances present the best opportunity for constraining or measuring changes in the fundamental constants of physics over time, however, we are now at the stage where potential differences in the morphology of the absorbing systems and the background source, combined with their temporal evolution, provide the major source of uncertainty in some systems. Here we present the first milliarcsecond resolution observations of the molecular absorption system towards PKS B1830-211. We have imaged the absorption from the 12.2-GHz transition of methanol (which is redshifted to 6.45 GHz) toward the southwestern component and show that it is possibly offset from the peak of the continuum emission and partially resolved on milliarcsecond scales. Future observations of other methanol transitions with similar angular resolution offer the best prospects for reducing systematic errors in investigations of possible changes in the proton-to-electron mass ratio on cosmological scales.
We investigated the jet width profile with distance along the jet in the nearby radio galaxy NGC 1052 at radial distances between $sim300$ to $4 times 10^7$ Schwarzschild Radii($R_{rm S}$) from the central engine on both their approaching and receding jet sides. The width of jets was measured in images obtained with the VLBI Space Observatory Programme (VSOP), the Very Long Baseline Array (VLBA), and the Very Large Array (VLA). The jet-width profile of receding jets are apparently consistent with that of approaching jets throughout the measuring distance ranges, indicating symmetry at least up to the sphere of gravitational influence of the central black hole. The power-law index $a$ of the jet-width profile ($w_{rm{jet}} propto r^{a}$, where $w_{rm jet}$ is the jet width, $r$ is the distance from the central engine in the unit of $R_{rm S}$) apparently shows a transition from $a sim 0$ to $a sim 1$, i.e., the cylindrical-to-conical jet structures, at a distance of $sim1times10^{4} R_{mathrm{S}}$. The cylindrical jet shape at the small distances is reminiscent of the innermost jets in 3C 84. Both the central engines of NGC 1052 and 3C 84 are surrounded by dense material, part of which is ionized and causes heavy free-free absorption.
It is well-known that discrete-time finite-state Markov Chains, which are described by one-sided conditional probabilities which describe a dependence on the past as only dependent on the present, can also be described as one-dimensional Markov Fields, that is, nearest-neighbour Gibbs measures for finite-spin models, which are described by two-sided conditional probabilities. In such Markov Fields the time interpretation of past and future is being replaced by the space interpretation of an interior volume, surrounded by an exterior to the left and to the right. If we relax the Markov requirement to weak dependence, that is, continuous dependence, either on the past (generalising the Markov-Chain description) or on the external configuration (generalising the Markov-Field description), it turns out this equivalence breaks down, and neither class contains the other. In one direction this result has been known for a few years, in the opposite direction a counterexample was found recently. Our counterexample is based on the phenomenon of entropic repulsion in long-range Ising (or Dyson) models.