On time-dependent X-ray reflection by photoionized accretion disks: implication for Fe K-alpha line reverberation studies of AGN


Abstract in English

We perform a first study of time-dependent X-ray reflection in photo-ionized accretion disks. We assume a step-functional change in the X-ray flux and use a simplified prescription to describe the time evolution of the illuminated gas density profile in response to changes in the flux. We find that the dynamical time for re-adjustment of the hydrostatic balance is an important relaxation time scale of the problem since it affects evolution of the ionization state of the reflector. Because of this the Fe K-alpha line emissivity depends on the shape and intensity of the illuminating flux in prior times, and hence it is not a function of the instantaneous illuminating spectrum. Moreover, during the transition, a prominent Helium-like component of the Fe K-alpha line may appear. As a result, the line flux may appear to be completely uncorrelated with X-ray continuum flux on time scales shorter than the dynamical time. In addition, the time-dependence of the illuminating flux may leave imprints even on the time-averaged line spectra, which may be used as an additional test of accretion disk geometry. Our findings appear to be important for the proposed Fe K-alpha line reverberation studies in lamppost-like geometries for accretion rates exceeding about $sim 1%$ of the Eddington value. However, most AGN do not show Helium-like lines that are prominent in such models, probably indicating that these models are not applicable to real sources.

Download