No Arabic abstract
Preliminary analysis of the X-ray spectrum of NGC 1068 obtained by the RGS spectrometer on board XMM-Newton is presented. A physically consistent model is developed in order to quantitatively describe the reprocessing of the central AGN continuum source into the discrete X-ray emission observed in Seyfert 2 galaxies. All the important atomic processes are taken into account, including photoexcitation, which has been neglected in some previous models. The model fits the high resolution NGC 1068 data very well, which implies that the contribution of hot collisional gas to the X-ray spectrum of NGC 1068 is negligible.
We use the full broad-band XMM-Newton EPIC data to examine the X-ray spectrum of the nearby Seyfert 2 galaxy NGC 1068, previously shown to be complex with the X-ray continuum being a sum of components reflected/scattered from cold (neutral) and warm (ionised) matter, together with associated emission line spectra. We quantify the neutral and ionised reflectors in terms of the luminosity of the hidden nucleus. Both are relatively weak, a result we interpret on the Unified Seyfert Model by a near side-on view to the putative torus, reducing the visibility of the illuminated inner surface of the torus (the cold reflector), and part of the ionised outflow. A high inclination in NGC 1068 also provides a natural explanation for the large (Compton-thick) absorbing column in the line-of-sight to the nucleus. The emission line fluxes are consistent with the strength of the neutral and ionised continuum components, supporting the robustness of the spectral model.
We investigate the photoionised X-ray emission line regions (ELRs) within the Seyfert 2 galaxy NGC 1068, to determine if there are any characteristic changes between observations taken fourteen years apart. We compare XMM-Newton observations collected in 2000 and 2014, simultaneously fitting the reflection grating spectrometer (RGS) and EPIC-pn spectra of each epoch, for the first time, with the photoionisation model, PION, in SPEX. We find that four PION components are required to fit the majority of the emission lines in the spectra of NGC 1068, with $log xi=1-4$, $log N_H>26 m^{-2}$, and $v_{out}=-100$ to $-600 kms^{-1}$ for both epochs. Comparing the ionisation state of the components shows almost no difference between the two epochs, while there is an increase in the total column density. To estimate the locations of these plasma regions from the central black hole we compare distance methods, excluding the variability arguments as there is no spectral change between observations. Although the methods are unable to constrain the distances, the locations are consistent with the narrow line region, with the possibility of the higher ionised component being part of the broad line region, but we cannot conclude this for certain. In addition, we find evidence for emission from collisionally ionised plasma, while previous analysis had suggested that collisional plasma emission was unlikely. However, although PION is unable to account for the FeXVII emission lines at 15 and 17 AA, we do not rule out that photoexcitation is a valid processes to produce these lines too. NGC 1068 has not changed, both in terms of the observed spectra or from our modelling, within the 14 year time period between observations. This suggests that the ELRs are fairly static relative to the 14 year time frame between observations, or there is no dramatic change in the black hole variability.
(abridged) Based on observations of the Seyfert nucleus in NGC1068 with ASCA, RXTE and BeppoSAX, we report the discovery of a flare (increase in flux by a factor of ~1.6) in the 6.7 keV Fe K line component between observations obtained 4 months apart, with no significant change in the other (6.21, 6.4, and 6.97 keV) Fe K_alpha line components. During this time, the continuum flux decreased by ~20%. The RXTE spectrum requires an Fe K absorption edge near 8.6 keV (Fe XXIII - XXV). The spectral data indicate that the 2-10 keV continuum emission is dominated (~2/3 of the luminosity) by reflection from a previously unidentified region of warm, ionized gas located <~ 0.2 pc from the AGN. The remaining ~1/3 of the observed X-ray emission is reflected from optically thick, neutral gas. The inferred properties of the warm reflector (WR) are: size (diameter) <~0.2 pc, gas density n >~ 10^{5.5} /cm3, ionization parameter xi approx 10^{3.5} erg cm/s, and covering fraction 0.003 (L_0/10^{43.5} erg/s)^{-1} < (Omega/4 pi) < 0.024 (L_0/10^{43.5})^{-1}, where L_0 is the intrinsic 2-10 keV X-ray luminosity of the AGN. We suggest that the WR gas is the source of the (variable) 6.7 keV Fe line emission, and the 6.97 keV Fe line emission. The 6.7 keV line flare is assumed to be due to an increase in the emissivity of the WR gas from a decrease (by 20-30%) in L_0. The properties of the WR are most consistent with an intrinsically X-ray weak AGN with L_0 approx 10^{43.0} erg/s. The optical and UV emission that scatters from the WR into our line of sight is required to suffer strong extinction, which can be reconciled if the line-of-sight skims the outer surface of the torus. Thermal bremsstrahlung radio emission from the WR may be detectable in VLBA radio maps of the NGC 1068 nucleus.
We present a detailed, photoionization modeling analysis of XMM-Newton/Reflection Grating Spectrometer observations of the Seyfert 2 galaxy NGC 1068. The spectrum, previously analyzed by Kinkhabwala et al. (2002), reveals a myriad of soft-Xray emission lines, including those from H- and He-like carbon, nitrogen, oxygen, and neon, and M- and L-shell iron. As noted in the earlier analysis, based on the narrowness of the radiative recombination continua, the electron temperatures in the emission-line gas are consistent with photoionization, rather than collisional ionization. The strengths of the carbon and nitrogen emission lines, relative to those of oxygen, suggest unusual elemental abundances, which we attribute to star-formation history of the host galaxy. Overall, the emission-lines are blue-shifted with respect to systemic, with radial velocities ~ 160 km/s, similar to that of [O III] 5007, and thus consistent with the kinematics and orientation of the optical emission-line gas and, hence, likely part of an AGN-driven outflow. We were able to achieve an acceptable fit to most of the strong emission-lines with a two-component photoionization model, generated with Cloudy. The two components have ionization parameters and column densities of logU = -0.05 and 1.22, and logN(H) = 20.85 and 21.2, and covering factors of 0.35 and 0.84, respectively. The total mass of the X-ray gas is roughly of an order of magnitude greater than the mass of ionized gas determined from optical and near-IR spectroscopy, which indicates that it may be the dominant component of the narrow line region. Furthermore, we suggest that the medium which produces the scattered/polarized optical emission in NGC~1068 possesses similar physical characteristics to those of the more highly-ionized of the X-ray model components.
Soft X-ray spectroscopy of Seyfert 2 galaxies offers perhaps the best method to probe the possible connection between AGN activity and star formation. Obscuration of powerful radiation from the inferred nucleus allows for detailed study of circumnuclear emission regions. And soft X-ray spectroscopy of these regions allows for robust discrimination between warm gas radiatively driven by the AGN and hot collisionally-driven gas possibly associated with star formation. A simple model of a (bi-)cone of gas photoionized and photoexcited by a nuclear power-law continuum is sufficient to explain the soft X-ray spectra of all Seyfert 2 galaxies so far observed by the XMM-Newton and Chandra satellites. An upper limit of around 10 percent to an additional hot, collisionally-driven gas contribution to the soft X-ray regime appears to hold for five different Seyfert 2 galaxies, placing interesting constraints on circumnuclear star formation.