No Arabic abstract
We present sub-arcminute resolution imaging of the Galactic supernova remnant W49B at 74 MHz (25) and 327 MHz (6), the former being the lowest frequency at which the source has been resolved. While the 327 MHz image shows a shell-like morphology similar to that seen at higher frequencies, the 74 MHz image is considerably different, with the southwest region of the remnant almost completely attenuated. The implied 74 MHz optical depth (~ 1.6) is much higher than the intrinsic absorption levels seen inside two other relatively young remnants, Cas A and the Crab Nebula, nor are natural variations in the relativistic electron energy spectra expected at such levels. The geometry of the absorption is also inconsistent with intrinsic absorption. We attribute the absorption to extrinsic free-free absorption by a intervening cloud of thermal electrons. Its presence has already been inferred from the low-frequency turnover in the integrated continuum spectrum and from the detection of radio recombination lines toward the remnant. Our observations confirm the basic conclusions of those measurements, and our observations have resolved the absorber into a complex of classical HII regions surrounded either partially or fully by low-density HII gas. We identify this low-density gas as an extended HII region envelope (EHE), whose statistical properties were inferred from low resolution meter- and centimeter-wavelength recombination line observations. Comparison of our radio images with HI and H_2CO observations show that the intervening thermal gas is likely associated with neutral and molecular material as well.
Vela Jr. (RX J0852.0$-$4622) is one of just a few known supernova remnants (SNRs) with a resolved shell across the whole electromagnetic spectrum from radio to very-high-energy ($>100$ GeV; VHE) gamma-rays. Its proximity and large size allow for detailed spatially resolved observations of the source making Vela Jr. one of the primary sources used for the study of particle acceleration and emission mechanisms in SNRs. High-resolution X-ray observations reveal a steepening of the spectrum toward the interior of the remnant. In this study we aim for a self-consistent radiation model of Vela Jr. which at the same time would explain the broadband emission from the source and its intensity distribution. We solve the full particle transport equation combined with the high-resolution 1D hydrodynamic simulations (using Pluto code) and subsequently calculate the radiation from the remnant. The equations are solved in the test particle regime. We test two models for the magnetic field profile downstream of the shock: damped magnetic field which accounts for the damping of strong magnetic turbulence downstream, and transported magnetic field. Neither of these scenarios can fully explain the observed radial dependence of the X-ray spectrum under spherical symmetry. We show, however, that the softening of the spectrum and the X-ray intensity profile can be explained under the assumption that the emission is enhanced within a cone.
We present a hard X-ray spectrum of unprecedented quality of the Galactic supernova remnant W49B obtained with the Suzaku satellite. The spectrum exhibits an unusual structure consisting of a saw-edged bump above 8 keV. This bump cannot be explained by any combination of high-temperature plasmas in ionization equilibrium. We firmly conclude that this bump is caused by the strong radiative recombination continuum (RRC) of iron, detected for the first time in a supernova remnant. The electron temperature derived from the bremsstrahlung continuum shape and the slope of the RRC is 1.5 keV. On the other hand, the ionization temperature derived from the observed intensity ratios between the RRC and K-alpha lines of iron is 2.7 keV. These results indicate that the plasma is in a highly overionized state. Volume emission measures independently determined from the fluxes of the thermal and RRC components are consistent with each other, suggesting the same origin of these components.
The Galactic supernova remnant W49B has one of the most impressive X-ray emission line spectra obtained with the Advanced Satellite for Cosmology and Astronomy (ASCA). We use both plasma line diagnostics and broadband model fits to show that the Si and S emission lines require multiple spectral components. The spectral data do not necessarily require individual elements to be spatially stratified, as suggested by earlier work, although when ASCA line images are considered, it is possible that Fe is stratified with respect to Si and S. Most of the X-ray emitting gas is from ejecta, based on the element abundances required, but is surprisingly close to being in collisional ionization equilibrium. A high ionization age implies a high internal density in a young remnant. The fitted emission measure for W49B indicates a minimum density of 2 cm^-3, with the true density likely to be significantly higher. W49B probably had a Type Ia progenitor, based on the relative element abundances, although a low-mass Type II progenitor is still possible. We find persuasive evidence for Cr and possibly Mn emission in the ASCA spectrum--the first detection of these elements in X-rays from a cosmic source.
We report on NuSTAR observations of the mixed morphology supernova remnant (SNR) W49B, focusing on its nonthermal emission. Whereas radio observations as well as recent gamma-ray observations evidenced particle acceleration in this SNR, nonthermal X-ray emission has not been reported so far. With the unprecedented sensitivity of NuSTAR in the hard X-ray band, we detect a significant power-law-like component extending up to $sim 20~{rm keV}$, most probably of nonthermal origin. The newly discovered component has a photon index of $Gamma =1.4^{+1.0}_{-1.1}$ with an energy flux between 10 and 20 keV of $(3.3 pm 0.7) times 10^{-13}~{rm erg}~{rm cm}^{-2}~{rm s}^{-1}$. The emission mechanism is discussed based on the NuSTAR data combined with those in other wavelengths in the literature. The NuSTAR data, in terms both of the spectral slope and of the flux, are best interpreted as nonthermal electron bremsstrahlung. If this scenario is the case, then the NuSTAR emission provides a new probe to sub-relativistic particles accelerated in the SNR.
We perform detailed spectroscopy of the X-ray brightest supernova remnant (SNR) in the Large Magellanic Cloud (LMC), N132D, using Chandra archival observations. By analyzing the spectra of the entire well-defined rim, we determine the mean abundances for O, Ne, Mg, Si, S and Fe for the local LMC environment. We find evidence of enhanced O on the north-western and S on the north-eastern blast wave. By analyzing spectra interior to the remnant, we confirm the presence of a Si-rich relatively hot plasma (> 1.5 kev) that is also responsible for the Fe K emission. Chandra images show that the Fe K emission is distributed throughout the interior of the southern half of the remnant but does not extend out to the blast wave. We estimate the progenitor mass to be $15pm5,M_{odot}$ using abundance ratios in different regions that collectively cover a large fraction of the remnant, as well as from the radius of the forward shock compared with models of an explosion in a cavity created by stellar winds. We fit ionizing and recombining plasma models to the Fe K emission and find that the current data cannot distinguish between the two, hence the origin of the high-temperature plasma remains uncertain. Our analysis is consistent with N132D being the result of a core-collapse supernova in a cavity created by its intermediate mass progenitor.