Do you want to publish a course? Click here

A turbulent MHD model for molecular clouds and a new method of accretion on to star-forming cores

166   0   0.0 ( 0 )
 Added by Derek Ward-Thompson
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the results of a sequence of simulations of gravitational collapse in a turbulent magnetized region. The parameters are chosen to be representative of molecular cloud material. We find that several protostellar cores and filamentary structures of higher than average density form. The filaments inter-connect the high density cores. Furthermore, the magnetic field strengths are found to correlate positively with the density, in agreement with recent observations. We make synthetic channel maps of the simulations and show that material accreting onto the cores is channelled along the magnetized filamentary structures. This is compared with recent observations of S106, and shown to be consistent with these data. We postulate that this mechanism of accretion along filaments may provide a means for molecular cloud cores to grow to the point where they become gravitationally unstable and collapse to form stars.



rate research

Read More

437 - Nannan Yue , Yang Gao , Di Li 2020
Stars form through the gravitational collapse of molecular cloud cores. Before collapsing, the cores are supported by thermal pressure and turbulent motions. A question of critical importance for the understanding of star formation is how to observationally discern whether a core has already initiated gravitational collapse or is still in hydrostatic balance. The canonical method to identify gravitational collapse is based on the observed density radial profile, which would change from a Bonnor-Ebert type toward power laws as the core collapses. In practice, due to the projection effect, the resolution limit, and other caveats, it has been difficult to directly reveal the dynamical status of cores, particularly in massive star-forming regions. We here propose a novel, straight-forward diagnostic, namely, the collapsing index (CI), which can be modeled and calculated based on the radial profile of the line width of dense gas. A meaningful measurement of CI requires spatially and spectrally resolved images of optically thin and chemically stable dense gas tracers. ALMA observations are making such data sets increasingly available for massive star-forming regions. Applying our method to one of the deepest dense-gas spectral images ever taken toward such a region, namely, the Orion molecular cloud, we detect the dynamical status of selected cores therein. We observationally distinguished a collapsing core in a massive star-forming region from a hydrostatical one. Our approach would help significantly improve our understanding of the interaction between gravity and turbulence within molecular cloud cores in the process of star formation.
We use 3D-PDR, a three-dimensional astrochemistry code for modeling photodissociation regions (PDRs), to post-process hydrodynamic simulations of turbulent, star-forming clouds. We focus on the transition from atomic to molecular gas, with specific attention to the formation and distribution of H, C+, C, H2 and CO. First, we demonstrate that the details of the cloud chemistry and our conclusions are insensitive to the simulation spatial resolution, to the resolution at the cloud edge, and to the ray angular resolution. We then investigate the effect of geometry and simulation parameters on chemical abundances and find weak dependence on cloud morphology as dictated by gravity and turbulent Mach number. For a uniform external radiation field, we find similar distributions to those derived using a one-dimensional PDR code. However, we demonstrate that a three-dimensional treatment is necessary for a spatially varying external field, and we caution against using one-dimensional treatments for non-symmetric problems. We compare our results with the work of Glover et al. (2010), who self-consistently followed the time evolution of molecule formation in hydrodynamic simulations using a reduced chemical network. In general, we find good agreement with this in situ approach for C and CO abundances. However, the temperature and H2 abundances are discrepant in the boundary regions (Av < 5), which is due to the different number of rays used by the two approaches.
We review how supersonic turbulence can both prevent and promote the collapse of molecular clouds into stars. First we show that decaying turbulence cannot significantly delay collapse under conditions typical of molecular clouds, regardless of magnetic field strength so long as the fields are not supporting the cloud magnetohydrostatically. Then we review possible drivers and examine simulations of driven supersonic and trans Alfvenic turbulence, finally including the effects of self-gravity. Our preliminary results show that, although turbulence can support regions against gravitational collapse, the strong compressions associated with the required velocities will tend to promote collapse of local condensations.
To date, most numerical simulations of molecular clouds, and star formation within them, assume a uniform density sphere or box with an imposed turbulent velocity field. In this work, we select molecular clouds from galactic scale simulations as initial conditions, increase their resolution, and re-simulate them using the SPH code Gadget2. Our approach provides clouds with morphologies, internal structures, and kinematics that constitute more consistent and realistic initial conditions for simulations of star formation. We perform comparisons between molecular clouds derived from a galactic simulation, and spheres of turbulent gas of similar dimensions, mass and velocity dispersion. We focus on properties of the clouds such as their density, velocity structure and star formation rate. We find that the inherited velocity structure of the galactic clouds has a significant impact on the star formation rate and evolution of the cloud. Our results indicate that, although we can follow the time evolution of star formation in any simulated cloud, capturing the entire history is difficult as we ignore any star formation that might have occurred before initialisation. Overall, the turbulent spheres do not match the complexity of the galactic clouds.
Winds from massive stars have velocities of 1000 km/s or more, and produce hot, high pressure gas when they shock. We develop a theory for the evolution of bubbles driven by the collective winds from star clusters early in their lifetimes, which involves interaction with the turbulent, dense interstellar medium of the surrounding natal molecular cloud. A key feature is the fractal nature of the hot bubbles surface. The large area of this interface with surrounding denser gas strongly enhances energy losses from the hot interior, enabled by turbulent mixing and subsequent cooling at temperatures T = 10^4-10^5 K where radiation is maximally efficient. Due to the extreme cooling, the bubble radius scales differently (R ~ t^1/2) from the classical Weaver77 solution, and has expansion velocity and momentum lower by factors of 10-10^2 at given R, with pressure lower by factors of 10^2 - 10^3. Our theory explains the weak X-ray emission and low shell expansion velocities of observed sources. We discuss further implications of our theory for observations of the hot bubbles and cooled expanding shells created by stellar winds, and for predictions of feedback-regulated star formation in a range of environments. In a companion paper, we validate our theory with a suite of hydrodynamic simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا