Do you want to publish a course? Click here

ASCA observations of deep ROSAT fields V. The X-ray spectrum of hard X-ray selected QSOs

97   0   0.0 ( 0 )
 Added by Anastasia Pappa
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the rosat and asca spectra of 21 broad line AGN (QSOs) with $zsim 1$ detected in the 2-10 keV band with the asca gis. The summed spectrum in the asca band is well described by a power-law with $Gamma=1.56pm0.18$, flatter that the average spectral index of bright QSOs and consistent with the spectrum of the X-ray background in this band. The flat spectrum in the asca band could be explained by only a moderate absorption ($sim 10^{22} rm cm^{-2}$) assuming the typical AGN spectrum ie a power-law with $Gamma$=1.9. This could in principle suggest that some of the highly obscured AGN, required by most X-ray background synthesis models, may be associated with normal blue QSOs rather than narrow-line AGN. However, the combined 0.5-8 keV asca-rosat spectrum is well fit by a power-law of $Gamma=1.7pm0.2$ with a spectral upturn at soft energies. It has been pointed out that such an upturn may be an artefact of uncertainties in the calibration of the ROSAT or ASCA detectors. Nevertheless if real, it could imply that the above absorption model suggested by the asca data alone is ruled out. Then a large fraction of QSOs could have ``concave spectra ie they gradually steepen towards softer energies. This result is in agreement with the bepposax hardness ratio analysis of $sim$ 100 hard X-ray selected sources.



rate research

Read More

77 - M. Cappi 1998
shortened) Results obtained from 9 X-ray observations of 3C 273 performed by ASCA are presented (for a total exposure time of about 160 000 s). The analysis and interpretation of the results is complicated by the fact that 4 of these observations were used for on-board calibration of the CCDs spectral response. The present analysis shows that, in agreement with official recommendations, a conservative systematic error (at low energies) of about 2-3 x 10**20cm-2 must be assumed when analyzing ASCA SIS data. A soft-excess, with variable flux and/or shape, has been clearly detected as well as flux and spectral variability. An anti-correlation is found between the spectral index and the flux in the 2-10 keV energy range. Fitting the data with the latest available calibration matrices, we also detect an emission line at ~5.4-5.7 keV (~6.3-6.6 keV in the quasar frame) in (only) the two observations with lowest fluxes where it is weak (EW ~ 20-30 eV), narrow and consistent with being produced by Fe K emission from neutral matter. Overall, the observations are qualitatively consistent with a variable, non-thermal X-ray continuum emission, i.e., a power law with Gamma~1.6 (possibly produced in the innermost regions of the radio-optical jet), plus underlying ``Seyfert-like features, i.e., a soft-excess and Fe K line emission due to a reflection component. When the continuum (jet) emission is in a low state, the spectral features produced by the Seyfert-like spectrum (soft-excess, iron line and possibly a steep power law plus reflection continuum) are more easily seen.
Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we chose 13 sources which have been observed by XMM-Newton for less than 20 ks, in order to explore the broad band soft to hard X-ray properties with the analysis of combined XMM-Newton and Swift data. Out of these we found seven sources which exhibit potentially promising features of the relativistic disc reflection, such as a strong soft excess, a large Compton hump and/or a broadened Fe line. Longer observations of four of these sources with the currently operating satellite missions, such as Suzaku, XMM-Newton and NuStar and two others by such future missions as ASTRO-H, will be invaluable, in order to better understand the relativistic disc reflection closest to the central black hole and constrain such important effects of strong gravity as the black hole spin.
We present ROSAT (HRI and PSPC) and ASCA observations of the two luminous (L_x ~10^{41-42} erg s^{-1}) star-forming galaxies NGC3310 and NGC3690. The HRI shows clearly that the sources are extended with the X-ray emission in NGC3690 coming from at least three regions. The combined 0.1-10 keV spectrum of NGC3310 can be described by two components, a Raymond-Smith plasma with temperature kT=0.81^{+0.09}_{-0.12} keV and a hard power-law, Gamma=1.44^{+0.20}_{-0.11}, (or alternatively a harder Raymond-Smith plasma with kT ~15 keV), while there is no substantial excess absorption above the Galactic. The soft component emission is probably due to a super-wind while the nature of the hard emission is more uncertain with likely origins, X-ray binaries, inverse Compton scattering of IR photons, an AGN or a very hot gas component (~10^8 K). The spectrum of NGC3690 is similar, with kT=0.83^{+0.02}_{-0.04} keV and Gamma=1.56^{+0.11}_{-0.11}. We also employ more complicated models such as a multi-temperature thermal plasma, a non-equilibrium ionization code or the addition of a third softer component which improve the fit but not at a statistically significant level (<2sigma). These results are similar to recent results on the archetypal star-forming galaxies M82 and NGC253.
The recently commissioned Compact Array Broadband Backend (CABB) on the Australia Telescope Compact Array (ATCA) provides 2 GHz bandwidth in each frequency and polarisation, significantly increasing the sensitivity of the Array. This increased sensitivity allows for larger samples of sources to be targeted whilst also probing fainter radio luminosities. Using CABB, we have observed a large sample of objects at 20 GHz to investigate the high-frequency radio luminosity distribution of X-ray selected QSOs at redshifts less than 1. Observing at high frequencies allows us to focus on the core emission of the AGN, hence recording the most recent activity.
Measuring the population of obscured quasars is one of the key issues to understand the evolution of active galactic nuclei (AGNs). With a redshift completeness of 99%, the X-ray sources detected in Chandra Deep Field South (CDF-S) provide the best sample for this issue. In this letter we study the population of obscured quasars in CDF-S by choosing the 4 -- 7 keV selected sample, which is less biased by the intrinsic X-ray absorption. The 4 -- 7 keV band selected samples also filter out most of the X-ray faint sources with too few counts, for which the measurements of N_H and L_X have very large uncertainties. Simply adopting the best-fit L_2-10keV and N_H, we find 71% (20 out of 28) of the quasars (with intrinsic L_2-10keV > 10^44 erg/s) are obscured with N_H > 10^22 cm^-2. Taking account of the uncertainties in the measurements of both N_H and L_X, conservative lower and upper limits of the fraction are 54% (13 out 24) and 84% (31 out 37). In Chandra Deep Field North, the number is 29%, however, this is mainly due to the redshift incompleteness. We estimate a fraction of ~ 50% - 63% after correcting the redshift incompleteness with a straightforward approach. Our results robustly confirm the existence of a large population of obscured quasars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا