No Arabic abstract
We model the X-rays reprocessed by an accretion disk in a fiducial low-mass X-ray binary system with a neutron star primary. An atmosphere, or the intermediate region between the optically thick disk and a Compton-temperature corona, is photoionized by the neutron star continuum. X-ray lines from the recombination of electrons with ions dominate the atmosphere emission and should be observable with the Chandra and XMM-Newton high-resolution spectrometers. The self-consistent disk geometry agrees well with optical observations of these systems, with the atmosphere shielding the companion from the neutron star. At a critical depth range, the disk gas has one thermally unstable and two stable solutions. A clear difference between the model spectra exists between evaporating and condensing disk atmospheres. This difference should be observable in high-inclination X-ray binaries, or whenever the central continuum is blocked by absorbing material and the extended disk emission is not.
We calculate the atmospheric structure of an accretion disk around a Kerr black hole and obtain its X-ray spectrum, which exhibits prominent atomic transitions under certain circumstances. The gravitational and Doppler (red)shifts of the C V, C VI, O VII, O VIII, and Fe I-XXVI emission lines are observable in active galaxies. We quantify the line emissivities as a function of radius, to identify the effects of atmospheric structure, and to determine the usefulness of these lines for probing the disk energetics. The line emissivities do not always scale linearly with the incident radiative energy, as in the case of Fe XXV and Fe XXVI. Our model incorporates photoionization and thermal balance for the plasma, the hydrostatic approximation perpendicular to the plane of the disk, and general relativistic tidal forces. We include radiative recombination rates, fluorescence yields, Compton scattering, and photoelectric opacities for the most abundant elements.
The mechanism of thermal driving for launching mass outflows is interconnected with classical thermal instability (TI). In a recent paper, we demonstrated that as a result of this interconnectedness, radial wind solutions of X-ray heated flows are prone to becoming clumpy. In this paper, we first show that the Bernoulli function determines whether or not the entropy mode can grow due to TI in dynamical flows. Based on this finding, we identify a critical `unbound radius beyond which TI should accompany thermal driving. Our numerical disk wind simulations support this result and reveal that clumpiness is a consequence of buoyancy disrupting the stratified structure of steady state solutions. Namely, instead of a smooth transition layer separating the highly ionized disk wind from the cold phase atmosphere below, hot bubbles formed from TI rise up and fragment the atmosphere. These bubbles first appear within large scale vortices that form below the transition layer, and they result in the episodic production of distinctive cold phase structures referred to as irradiated atmospheric fragments (IAFs). Upon interacting with the wind, IAFs advect outward and develop extended crests. The subsequent disintegration of the IAFs takes place within a turbulent wake that reaches high elevations above the disk. We show that this dynamics has the following observational implications: dips in the absorption measure distribution are no longer expected within TI zones and there can be a less sudden desaturation of X-ray absorption lines such as OVIII as well as multiple absorption troughs in FeXXVK.
Recent observations of X-ray pulsars at low luminosities allow, for the first time, to compare theoretical models for the emission from highly magnetized neutron star atmospheres at low mass accretion rates ($dot{M} lesssim 10^{15}$ g s$^{-1}$) with the broadband X-ray data. The purpose of this paper is to investigate the spectral formation in the neutron star atmosphere at low $dot{M}$ and to conduct a parameter study of physical properties of the emitting region. We obtain the structure of the static atmosphere, assuming that Coulomb collisions are the dominant deceleration process. The upper part of the atmosphere is strongly heated by the braking plasma, reaching temperatures of 30-40 keV, while its denser isothermal interior is much cooler (~2 keV). We numerically solve the polarized radiative transfer in the atmosphere with magnetic Compton scattering, free-free processes, and non-thermal cyclotron emission due to possible collisional excitations of electrons. The strongly polarized emitted spectrum has a double-hump shape that is observed in low-luminosity X-ray pulsars. A low-energy thermal component is dominated by extraordinary photons that can leave the atmosphere from deeper layers due to their long mean free path at soft energies. We find that a high-energy component is formed due to resonant Comptonization in the heated non-isothermal part of the atmosphere even in the absence of collisional excitations. The latter, however, affect the ratio of the two components. A strong cyclotron line originates from the optically thin, uppermost zone. A fit of the model to NuSTAR and Swift/XRT observations of GX 304-1 provides an accurate description of the data with reasonable parameters. The model can thus reproduce the characteristic double-hump spectrum observed in low-luminosity X-ray pulsars and provides insights into spectral formation.
One of the principal scientific objectives of the upcoming Constellation-X mission is to attempt to map the inner regions of accretion disks around black holes in Seyfert galaxies by reverberation mapping of the Fe K fluorescence line. This area of the disk is likely radiation pressure dominated and subject to various dynamical instabilities. Here, we show that density inhomogeneities in the disk atmosphere resulting from the photon bubble instability (PBI) can cause rapid changes in the X-ray reflection features, even when the illuminating flux is constant. Using a simulation of the development of the PBI, we find that, for the disk parameters chosen, the Fe K and O VIII Lyalpha lines vary on timescales as short as a few hundredths of an orbital time. In response to the changes in accretion disk structure, the Fe K equivalent width (EW) shows variations as large as ~100 eV. The magnitude and direction (positive or negative) of the changes depends on the ionization state of the atmosphere. The largest changes are found when the disk is moderately ionized. The O VIII EW varies by tens of eV, as well as exhibiting plenty of rapid, low-amplitude changes. This effect provides a natural explanation for some observed instances of short timescale Fe K variability which was uncorrelated with the continuum (e.g., Mrk 841). New predictions for Fe K reverberation mapping should be made which include the effects of this accretion disk driven line variability and a variable ionization state. Reflection spectra averaged over the evolution of the instability are well fit by constant density models in the 2-10 keV region.
We show that fast moving isolated fragments of a supernova ejecta composed of heavy elements should be sources of K_alpha X-ray line emission of the SN nuclear-processed products. Supersonic motion of the knots in the intercloud medium will result in a bow-shock/knot-shock structure creation. Fast nonthermal particles accelerated by Fermi mechanism in the MHD collisionless shocks diffuse through a cold metallic knot, producing the X-ray emission. We modeled the X-ray emission from a fast moving knot of a mass M ~ 10^{-3} Msun, containing about 10^{-4} Msun of any metal impurities like Si, S, Ar, Ca, Fe. The fast electron distribution was simulated using the kinetic description. We accounted for nonlinear effects of shock modification by the nonthermal particles pressure. The K_alpha line emission is most prominent for the knots propagating through dense molecular clouds. The bow shock should be a radiative wave with a prominent infrared and optical emission. In that case the X-ray line spectrum of an ejecta fragment is dominated by the low ionization states of the ions with the metal line luminosities reaching L_x gsim 10^{31} erg/s. High resolution XMM and Chandra observations are able to detect the line emission from the knots at distances up to a few kpcs. The knots propagating through tenuous interstellar matter are of much fainter surface brightness but long-lived. The line spectra with higher ionization states of the ions are expected in that case. Compact dense knots could be opaque for some X-ray lines and that is important for their abundances interpretation. The ensemble of unresolved knots of galactic supernovae can contribute substantially to the iron line emission observed from the Galactic Center region and the Galactic ridge.