No Arabic abstract
We report new (1995) Very Large Array observations and (1984 - 1999) Effelsberg 100m monitoring observations of the 22 GHz H2O maser spectrum of the Seyfert 2 galaxy NGC 1068. The sensitive VLA observations provide a registration of the 22 GHz continuum emission and the location of the maser spots with an accuracy of ~ 5 mas. Within the monitoring data, we find evidence that the nuclear masers vary coherently on time-scales of months to years, much more rapidly than the dynamical time-scale. We argue that the nuclear masers are responding in reverberation to a central power source, presumably the central engine. Between October and November 1997, we detected a simultaneous flare of the blue-shifted and red-shifted satellite maser lines. Reverberation in a rotating disk naturally explains the simultaneous flaring. There is also evidence that near-infrared emission from dust grains associated with the maser disk also responds to the central engine. We present a model in which an X-ray flare results in both the loss of maser signal in 1990 and the peak of the near-infrared light curve in 1994. In support of a rotating disk geometry for the nuclear masers, we find no evidence for centripetal accelerations of the redshifted nuclear masers; the limits are +/- 0.006 km/s/year, implying that the masers are located within 2 degrees of the kinematic line-of-nodes. We also searched for high velocity maser emission like that observed in NGC 4258. In both VLA and Effelsberg spectra, we detect no high velocity lines between +/- 350 km/s to +/- 850 km/s relative to systemic, arguing that masers only lie outside a radius of ~ 0.6 pc (1.9 light years) from the central engine (assuming a distance of 14.4 Mpc).
The nucleus of the Seyfert galaxy NGC 1068 is believed to host a supermassive black hole. Evidence for the presence of a massive central object is provided by water maser emission, which displays a linear pattern in the sky, suggestive of a rotating disk. The rotating disk hypothesis is further strengthened by the declining shape of the derived rotation curve. Similar maser emission from NGC 4258 has led to a reliable estimate of the mass of the central black hole, because in this case the rotation curve is Keplerian. In the case of NGC 1068 the rotation curve traced by the water maser is non-Keplerian. In this paper we provide an interpretation of the non-Keplerian rotation in NGC 1068 by means of a self-gravitating accretion disk model. We obtain a good fit to the available data and derive a black hole mass M_{bh}=(8.0pm 0.3) 10^6M_{sun}. The resulting disk mass is comparable to the black hole mass. As an interesting by-product of our fitting procedure, we are able to estimate the viscosity parameter, which turns out to be alphaapprox 10^{-2}, in line with some theoretical expectations.
VLBA and EVN radio observations of H2O masers at 22 GHz and methanol masers at 6.7 GHz have been used to obtain images of the maser spots in the infrared object GL2789, which is associated with the young stellar object V645Cyg. The position of these masers coincides with that of the optical object to within 0.2 arcsec. The maser spots are located in a line oriented north--south, and their positions and radial velocities can be described by a model with a Keplerian disk with maximum radius 40 AU for the H2O masers and 800 AU for the methanol masers. The H2O and methanol masers spots are unresolved, and the lower limits for their brightness temperatures are 2x10^{13} K and 1.4x10^9 K, respectively. A model in which the maser radiation is formed in extended water-methanol clouds associated with ice planets forming around the young star is proposed.
We present high-resolution spectral line and continuum VLBI and VLA observations of the nuclear region of NGC 253 at 22 GHz. While the water vapor masers in this region were detected on arcsecond and milliarcsecond scales, we could not detect any compact continuum emission with a 5 sigma upper limit of ~ 1 mJy. The observations reveal that the water maser emission is not related to a possible low-luminosity active galactic nucleus but is almost certainly associated with star-formation activity. Not detecting any compact continuum source on milliarcsecond scales also questions the presence of a - previously assumed - active nucleus in NGC 253.
It arises a puzzle in NGC, how to secularly maintain the counter-rotating disc from $0.2$ to $7,$pc unambiguously detected by recent ALMA observations of molecular gas. Upon further analysis of disc dynamics, we find that the Kelvin-Helmholtz (KH) instability (KHI) results in an unavoidable catastrophe of the disc developed at the interface between the reversely rotating parts, and demonstrate that a close binary of supermassive black holes provides tidal torques as the unique external sources to prevent the disc from the KH catastrophe. We are led to the inescapable conclusion that there must be a binary black hole at the center of NGC 1068, to prevent it from the KH catastrophe. The binary is composed of black holes with a separation of $0.1,$pc from GRAVITY/VLTI observations, a total mass of $1.3times 10^{7}:M_{odot}$ and a mass ratio of $sim 0.3$ estimated from the angular momentum budge of the global system. The KHI gives rise to forming a gap without cold gas at the velocity interface which overlaps with the observed gap of hot and cold dust regions. Releases of kinematic energies from the KHI of the disc are in agreement with observed emissions in radio and $gamma$-rays. Such a binary is shrinking with a timescale much longer than the local Hubble time via gravitational waves, however, the KHI leads to an efficient annihilation of the orbital angular momentum and speed up merge of the binary, providing a new paradigm of solving the long term issue of final parsec problem. Future observations of GRAVITY+/VLTI are expected to be able to spatially resolve the CB-SMBHs suggested in this paper.
We present a 190-307 GHz broadband spectrum obtained with Z-Spec of NGC 1068 with new measurements of molecular rotational transitions. After combining our measurements with those previously published and considering the specific geometry of this Seyfert 2 galaxy, we conduct a multi-species Bayesian likelihood analysis of the density, temperature, and relative molecular abundances of HCN, HNC, CS, and HCO+. We find that these molecules trace warm (T > 100 K) gas of H2 number densities 10^4.2 - 10^4.9 cm^-3. Our models also place strong constraints on the column densities and relative abundances of these molecules, as well as on the total mass in the circumnuclear disk. Using the uniform calibration afforded by the broad Z-Spec bandpass, we compare our line ratios to X-ray dominated region (XDR) and photon-dominated region models. The majority of our line ratios are consistent with the XDR models at the densities indicated by the likelihood analysis, lending substantial support to the emerging interpretation that the energetics in the circumnuclear disk of NGC 1068 are dominated by accretion onto an active galactic nucleus.