We present Hubble Space Telescope (HST) Near-Infrared Camera and Multi-object Spectrometer (NICMOS) observations of the reflection nebulosity associated with the T Tauri star HH 30. The images show the scattered light pattern characteristic of a highly inclined, optically thick disk with a prominent dustlane whose width decreases with increasing wavelength. The reflected nebulosity exhibits a lateral asymmetry in the upper lobe on the opposite side to that reported in previously published Wide Field Planetary Camera 2 (WFPC2) images. The radiation transfer model which most closely reproduces the data has a flared accretion disk with dust grains larger than standard interstellar medium grains by a factor of approximately 2.1. A single hotspot on the stellar surface provides the necessary asymmetry to fit the images and is consistent with previous modeling of the light curve and images. Photometric analysis results in an estimated extinction of Av>~80; however, since the photometry measures only scattered light rather than direct stellar flux, this a lower limit. The radiative transfer models require an extinction of Av = 7,900.