Do you want to publish a course? Click here

Kinematic Constraints on Evolutionary Scenarios for Blue Compact Dwarf Galaxies : I. Neutral Gas Dynamics

139   0   0.0 ( 0 )
 Added by Liese van Zee
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of high spatial resolution HI synthesis observations of six blue compact dwarf (BCD) galaxies. Optically, the selected galaxies have smooth, symmetric isophotes, and thus are the most likely of the BCD class to fade into an object morphologically similar to a dwarf elliptical when the current starburst ends. The neutral gas in all six galaxies appears to be rotationally supported, however, indicating that true morphological transformation from a BCD to a dE will require significant loss of angular momentum. Based on the observed neutral gas dynamics of these and other BCDs, it is unlikely that present-day BCDs will evolve directly into dwarf ellipticals after a starburst phase. We discuss alternative evolutionary scenarios for BCDs and place them within the larger context of galaxy formation and evolution models.



rate research

Read More

169 - L. van Zee 1998
We present the results of high spatial resolution HI observations of five intrinsically compact dwarf galaxies which are currently experiencing a strong burst of star formation. The HI maps indicate that these systems have a complex and clumpy interstellar medium. Unlike typical dwarf irregular galaxies, these Blue Compact Dwarf (BCD) galaxies exhibit strong central concentrations in their neutral gas distributions which may provide a clue to the origin of their strong star-burst activity. Furthermore, while all of the systems do appear to be rotating, based on observed velocity gradients, the kinematics are complex. All systems have non-ordered kinematic structure at some level; some of the extended gas is not necessarily kinematically connected to the main system. The observed gas distributions and kinematics place constraints on evolutionary scenarios for BCDs. Evolutionary links between BCDs, dwarf irregulars, and dwarf ellipticals have been postulated to explain their high star formation rates and low luminosity, low metallicity nature. The BCDs appear to have higher central mass concentrations in both gas and stellar content than the dwarf irregulars, indicating that evolutionary scenarios connecting these two classes will require mass redistribution. In addition, the fact that BCDs are rotationally supported systems indicates that BCDs are unlikely to evolve into dwarf ellipticals without substantial loss of angular momentum. Thus, while such evolutionary scenarios may still be possible with the aid of mergers or tidal interactions, the isolated nature of BCDs suggests that the majority of BCDs will not fade to become objects similar to the present day dwarf ellipticals.
199 - V. Lebouteiller 2008
We present the analysis of the interstellar spectrum of Pox 36 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Pox 36 was selected because of the relatively low foreground gas content that makes it possible to detect absorption-lines weak enough that unseen components should not be saturated. Interstellar lines of HI, NI, OI, SiII, PII, ArI, and FeII are detected. Column densities are derived directly from the observed line profiles except for HI, whose lines are contaminated by stellar absorption. We used the TLUSTY models to remove the stellar continuum and isolate the interstellar component. The best fit indicates that the dominant stellar population is B0. The fit of the interstellar HI line gives a column density of 10^{20.3pm0.4} cm-2. Chemical abundances were then computed from the column densities using the dominant ionization stage in the neutral gas. Our abundances are compared to those measured from emission-line spectra in the optical. Our results suggest that the neutral gas of Pox 36 is metal-deficient by a factor ~7 as compared to the ionized gas, and they agree with a metallicity of ~1/35 Z$_odot$. Conclusions: The abundance discontinuity between the neutral and ionized phases implies that most of the metals released by consecutive star-formation episodes mixes with the HI gas. The volume extent of the enrichment is so large that the metallicity of the neutral gas increases only slightly. The star-forming regions could be enriched only by a small fraction (~1%), but it would greatly enhance its metallicity. Our results are compared to those of other BCDs. We confirm the overall underabundance of metals in their neutral gas, with perhaps only the lowest metallicity BCDs showing no discontinuity.
302 - Philip Kaaret , Joseph Schmitt , 2011
We measured the X-ray fluxes from an optically-selected sample of blue compact dwarf galaxies (BCDs) with metallicities <0.07 and solar distances less than 15 Mpc. Four X-ray point sources were observed in three galaxies, with five galaxies having no detectable X-ray emission. Comparing X-ray luminosity and star formation rate, we find that the total X-ray luminosity of the sample is more than 10 times greater than expected if X-ray luminosity scales with star formation rate according to the relation found for normal-metallicity star-forming galaxies. However, due to the low number of sources detected, one can exclude the hypothesis that the relation of the X-ray binaries to SFR in low-metalicity BCDs is identical to that in normal galaxies only at the 96.6% confidence level. It has recently been proposed that X-ray binaries were an important source of heating and reionization of the intergalactic medium at the epoch of reionization. If BCDs are analogs to unevolved galaxies in the early universe, then enhanced X-ray binary production in BCDs would suggest an enhanced impact of X-ray binaries on the early thermal history of the universe.
We present results on integral-field optical spectroscopy of five luminous Blue Compact Dwarf galaxies. The data were obtained using the fiber system INTEGRAL attached at the William Herschel telescope. The galaxies Mrk 370, Mrk 35, Mrk 297, Mrk 314 and III Zw 102 were observed. The central 33x29 regions of the galaxies were mapped with a spatial resolution of 2/spaxel, except for Mrk 314, in which we observed the central 16x12 region with a resolution of 0.9/spaxel$. We use high-resolution optical images to isolate the star-forming knots in the objects; line ratios, electron densities and oxygen abundances in each of these regions are computed. We build continuum and emission-line intensity maps as well as maps of the most relevant line ratios: [OIII]5007Hb, [NII]6584Ha, and HaHb, which allow us to obtain spatial information on the ionization structure and mechanisms. We also derive the gas velocity field from the Ha and [OIII]5007 emission lines. We find that all the five galaxies are in the high end of the metallicity range of Blue Compact Dwarf galaxies, with oxygen abundances varying from Zsun~0.3 to Zsun~1.5. The objects show HII-like ionization in the whole field of view, except the outer regions of IIIZw102 whose large [NII]6584/Ha values suggest the presence of shocks. The five galaxies display inhomogeneous extinction patterns, and three of them have high Ha/Hb ratios, indicative of a large dust content; all galaxies display complex, irregular velocity fields in their inner regions.
We present and analyse the photometric properties of a nearly complete sample of blue compact dwarf (BCD) and irregular galaxies in the Virgo cluster from multi-band SDSS images. Our study intends to shed light on the ongoing debate of whether a structural evolution from present-day star-forming dwarf galaxies in a cluster environment into ordinary early-type dwarf galaxies is possible based on the structural properties. For this purpose, we decompose the surface brightness profiles of the BCDs into the luminosity contribution of the starburst component and that of their underlying low surface brightness (LSB) host. The latter dominates the stellar mass of the BCD. We find that the LSB-components of the Virgo BCDs are structurally compatible with the more compact half of the Virgo early-type dwarfs, except for a few extreme BCDs. Thus, after termination of starburst activity, the BCDs will presumably fade into galaxies that are structurally similar to ordinary early-type dwarfs. In contrast, the irregulars are more diffuse than the BCDs and are structurally similar to the more diffuse half of the Virgo early-type dwarfs. Therefore, the present-day Virgo irregulars are not simply non-starbursting BCDs. If starbursts in cluster BCDs are transient phenomena with a duration of ~100 Myr or less, during which the galaxies could not travel more than ~100 kpc, then a substantial number of non-starbursting counterparts of these systems must populate the same spatial volume, namely the Virgo cluster outskirts. The majority of them would have to be early-type dwarfs, based on the abundance of different galaxy types with similar colours and structural parameters to the LSB-components of the BCDs. However, most Virgo BCDs have redder LSB-host colours and a less prominent starburst than typical field BCDs, preventing a robust conclusion on possible oscillations between BCDs and early-type dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا