Do you want to publish a course? Click here

A Molecular Tidal Tail in the Medusa Minor Merger

371   0   0.0 ( 0 )
 Added by Susanne Aalto
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have detected CO 1-0 emission along the tidal tail of the NGC 4194 (the Medusa) merger. It is the first CO detection in the optical tail of a minor merger. Emission is detected both in the centre of the tail and at its tip. The molecular mass in the 33 Onsala 20m beam is estimated to be >= 8.5 x 10^7 M_{sun} which is at least 4% of the total molecular mass measured so far in this system. We suggest that the emission is a molecular tidal tail which is part of the extended structure of the main body, and that the molecular gas was thrown out by the collision instead of having formed in situ from condensing atomic material. We find it unlikely that the emission is associated with a tidal dwarf galaxy (even if the future formation of such an object is possible), but high resolution HI, CO and optical observations are necessary to resolve the issue. The Medusa is very likely the result of an elliptical+spiral collison and our detection supports the notion that molecular gas in minor mergers can be found at great distances from the merger centre.



rate research

Read More

409 - E. Manthey 2008
The Medusa (NGC 4194) is a well-studied nearby galaxy with the disturbed appearance of a merger and evidence for ongoing star formation. In order to test whether it could be the result of an interaction between a gas-rich disk-like galaxy and a larger elliptical, we have carried out optical and radio observations of the stars and the gas in the Medusa, and performed $N$-body numerical simulations of the evolution of such a system. We used the Nordic Optical Telescope to obtain a deep V-band image and the Westerbork Radio Synthesis Telescope to map the large-scale distribution and kinematics of atomic hydrogen. A single HI tail was found to the South of the Medusa with a projected length of 56 kpc (5) and a gas mass of 7* 10^8 M_sun, thus harbouring about one third of the total HI mass of the system. HI was also detected in absorption toward the continuum in the center. HI was detected in a small nearby galaxy to the North-West of the Medusa at a projected distance of 91 kpc. It is, however, unlikely that this galaxy has had a significant influence on the evolution of the Medusa. The simulations of the slightly prograde infall of a gas-rich disk galaxy on an larger, four time more massive elliptical (spherical) galaxy reproduce most of the observed features of the Medusa.Thus, the Medusa is an ideal object to study the merger-induced star formation contribution from the small galaxy of a minor merger.
We have searched for young star-forming regions around the merger remnant NGC 2782. By using GALEX FUV and NUV imaging and HI data we found seven UV sources, located at distances greater than 26 kpc from the center of NGC 2782, and coinciding with its western HI tidal tail. These regions were resolved in several smaller systems when Gemini/GMOS r-band images were used. We compared the observed colors to stellar population synthesis models and we found that these objects have ages of ~1 to 11 Myr and masses ranging from 10^3.9 to 10^4.6 Msun. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H)=8.74pm0.20, 8.81pm0.20 and 8.78pm0.20). These metallicities are similar to the value presented by the nuclear region of NGC 2782 and also similar to the value presented for an object located close to the main body of NGC 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGC 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the center of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.
Black hole - neutron star (BH-NS) mergers are a major target for ground-based gravitational wave (GW) observatories. A merger can also produce an electromagnetic counterpart (a kilonova) if it ejects neutron-rich matter that assembles into heavy elements through r-process nucleosynthesis. We study the kilonova signatures of the unbound dynamical ejecta of a BH-NS merger. We take as our initial state the results from a numerical relativity simulation, and then use a general relativistic hydrodynamics code to study the evolution of the ejecta with parameterized r-process heating models. The unbound dynamical ejecta is initially a flattened, directed tidal tail largely confined to a plane. Heating from the r-process inflates the ejecta into a more spherical shape and smooths its small-scale structure, though the ejecta retains its bulk directed motion. We calculate the electromagnetic signatures using a 3D radiative transfer code and a parameterized opacity model for lanthanide-rich matter. The light curve varies with viewing angle due to two effects: asphericity results in brighter emission for orientations with larger projected areas, while Doppler boosting results in brighter emission for viewing angles more aligned with the direction of bulk motion. For typical r-process heating rates, the peak bolometric luminosity varies by a factor of $sim 3$ with orientation while the peak in the optical bands varies by $sim 3$ magnitudes. The spectrum is blue-shifted at viewing angles along the bulk motion, which increases the $V$-band peak magnitude to $sim -14$ despite the lanthanide-rich composition.
172 - Karen Knierman 2012
While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios < 0.3). The peculiar spiral NGC 2782 is the result of a merger between two disk galaxies with a mass ratio of ~4:1 occurring ~200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun to occur in that tidal tail. However, deep H{alpha} narrowband images show evidence of recent star formation in the western tail. Across the entire western tail, we find the global star formation rate per unit area ({Sigma}SFR) to be several orders of magnitude less than expected from the total gas density. Together with extended FUV+NUV emission from Galaxy Evolution Explorer along the tail, this indicates a low global star formation efficiency in the tidal tail producing lower mass star clusters. The H II region that we observed has a local (few-kiloparsec scale) {Sigma}SFR from H{alpha} that is less than that expected from the total gas density, which is consistent with other observations of tidal debris. The star formation efficiency of this H II region inferred from the total gas density is low, but normal when inferred from the molecular gas density. These results suggest the presence of a very small, locally dense region in the western tail of NGC 2782 or of a low-metallicity and/or low-pressure star-forming region.
92 - S. Aalto , R. Beswick , E. Jutte 2010
Studying molecular gas properties in merging galaxies gives important clues to the onset and evolution of interaction-triggered starbursts. The CO/13CO 1-0 line intensity ratio can be used as a tracer of how dynamics and star formation processes impact the gas properties. The Medusa (NGC~4194) merger is particularly interesting to study since its LFIR/LCO ratio rivals that of ultraluminous galaxies (ULIRGs), despite the comparatively modest luminosity, indicating an exceptionally high star formation efficiency (SFE) in the Medusa merger. Interferometric OVRO observations of CO and 13CO 1-0 in the Medusa show the CO/13CO intensity ratio increases from normal, quiescent values (7-10) in the outer parts (r>2 kpc) of the galaxy to high (16 to >40) values in the central (r<1 kpc) starburst region. In the centre there is an east-west gradient where the line ratio changes by more than a factor of three over 5 (945 pc). The integrated 13CO emission peaks in the north-western starburst region while the central CO emission is strongly associated with the prominent crossing dust-lane. We discuss the central east-west gradient in the context of gas properties in the starburst and the central dust lane. We suggest that the central gradient is mainly caused by diffuse gas in the dust lane. In this scenario, the actual molecular mass distribution is better traced by the 13CO 1-0 emission than the CO. The possibilities of temperature and abundance gradients are also discussed. We compare the central gas properties of the Medusa to those of other minor mergers and suggest that the extreme and transient phase of the Medusa star formation activity has similar traits to those of high-redshift galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا