Do you want to publish a course? Click here

The Environments of a Complete, Moderate-Redshift Sample of FIRST Bent-Double Radio Sources

47   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an optical spectroscopic and imaging study of the environments of a complete sample of moderate-redshift, bent-double radio sources. More than half of the forty radio galaxies in the sample are associated with Abell richness class 0 or greater clusters at z<0.4. Most of the remaining objects are associated with groups, although a few appear to be hosted by nearly isolated elliptical galaxies. For the bent doubles appearing in poor environments, either dense gas must be associated with the systems to provide the ram pressure to bend the lobes, or alternative bending mechanisms will have to be invoked to explain the radio morphologies. Correlation with the ROSAT All Sky Survey Bright and Faint Source Catalogs reveals the majority of the z<0.2 objects in our sample that we classify optically as clusters are also X-ray sources.



rate research

Read More

Non-thermal properties of galaxy clusters have been studied with detailed and deep radio images in comparison with X-ray data. While much progress has been made, most of the studied clusters are at a relatively low redshift (z < 0.3). We here investigate the evolutionary properties of the non-thermal cluster emission using two statistically complete samples at z > 0.3. We obtained short JVLA observations at L-band of the statistically complete sample of very X-ray luminous clusters from the Massive Cluster Survey (MACS) presented by Ebeling et al. (2010), and redshift range 0.3 - 0.5. We add to this list the complete sample of the 12 most distant MACS clusters (z > 0.5) presented in Ebeling et al. (2007). Most clusters show evidence of emission in the radio regime. We present the radio properties of all clusters in our sample and show images of newly detected diffuse sources. A radio halo is detected in 19 clusters, and five clusters contain a relic source. Most of the brightest cluster galaxies (BCG) in relaxed clusters show radio emission with powers typical of FRII radio galaxies, and some are surrounded by a radio mini-halo. The high frequency of radio emission from the BCG in relaxed clusters suggests that BCG feedback mechanisms are in place already at z about 0.6. The properties of radio halos and the small number of detected relics suggest redshift evolution in the properties of diffuse sources. The radio power (and size) of radio halos could be related to the number of past merger events in the history of the system. In this scenario, the presence of a giant and high-power radio halo is indicative of an evolved system with a large number of past major mergers.
122 - Brian J. Morsony 2012
Bent-double radio sources have been used as a probe to measure the density of intergalactic gas in galaxy groups. We carry out a series of high-resolution, 3D simulations of AGN jets moving through an external medium with a constant density in order to develop a general formula for the radius of curvature of the jets, and to determine how accurately the density of the intra-group medium (IGM) can be measured. Our simulations produce curved jets ending in bright radio lobes with an extended trail of low surface brightness radio emission. The radius of curvature of the jets varies with time by only about 25%. The radio trail seen in our simulations is typically not detected in known sources, but may be detectable in lower resolution radio observations. The length of this tail can be used to determine the age of the AGN. We also use our simulation data to derive a formula for the kinetic luminosity of observed jets in terms of the radius of curvature and jet pressure. In characterizing how well observations can measure the IGM density, we find that the limited resolution of typical radio observations leads to a systematic under-estimate of the density of about 50%. The unknown angles between the observer and the direction of jet propagation and direction of AGN motion through the IGM leads to an uncertainty of about 50% in estimates of the IGM density. Previous conclusions drawn using these sources, indicating that galaxy groups contain significant reservoirs of baryons in their IGM, are still valid when considering this level of uncertainty. In addition, we model the X-ray emission expected from bent-double radio sources. We find that known sources in reasonably dense environments should be detectable in ~100 ks Chandra observations. X-ray observations of these sources would place constraints on the IGM density and AGN velocity that are complementary to radio observations.
We present high sensitivity polarimetric observations in 6 bands covering the 5.5-38 GHz range of a complete sample of 53 compact extragalactic radio sources brighter than 200 mJy at 20 GHz. The observations, carried out with the Australia Telescope Compact Array (ATCA), achieved a 91% detection rate (at 5 sigma). Within this frequency range the spectra of about 95% of sources are well fitted by double power laws, both in total intensity and in polarisation, but the spectral shapes are generally different in the two cases. Most sources were classified as either steep- or peaked-spectrum but less than 50% have the same classification in total and in polarised intensity. No significant trends of the polarisation degree with flux density or with frequency were found. The mean variability index in total intensity of steep-spectrum sources increases with frequency for a 4-5 year lag, while no significant trend shows up for the other sources and for the 8 year lag. In polarisation, the variability index, that could be computed only for the 8 year lag, is substantially higher than in total intensity and has no significant frequency dependence.
We present high sensitivity ($sigma_P simeq 0.6,$mJy) polarimetric observations in seven bands, from $2.1$ to $38,$GHz, of a complete sample of $104$ compact extragalactic radio sources brighter than $200,$mJy at $20,$GHz. Polarization measurements in six bands, in the range $5.5-38,$GHz, for $53$ of these objects were reported by citet{Galluzzi2017}. We have added new measurements in the same six bands for another 51 sources and measurements at $2.1,$GHz for the full sample of $104$ sources. Also, the previous measurements at $18$, $24$, $33$ and $38,$GHz were re-calibrated using the updated model for the flux density absolute calibrator, PKS1934-638, not available for the earlier analysis. The observations, carried out with the Australia Telescope Compact Array (ATCA), achieved a $90%$ detection rate (at $5sigma$) in polarization. $89$ of our sources have a counterpart in the $72$ to $231,$MHz GLEAM survey citep{HurleyWalker2017}, providing an unparalleled spectral coverage of $2.7$ decades of frequency for these sources. While the total intensity data from $5.5$ to $38,$GHz could be interpreted in terms of single component emission, a joint analysis of more extended total intensity spectra presented here, and of the polarization spectra, reveals that over $90%$ of our sources show clear indications of at least two emission components. We interpret this as an evidence of recurrent activity. Our high sensitivity polarimetry has allowed a $5,sigma$ detection of the weak circular polarization for $sim 38%$ of the dataset, and a deeper estimate of $20,$GHz polarization source counts than has been possible so far.
122 - P. N. Best 1999
A new sample of very powerful radio galaxies is defined from the Molonglo Reference Catalogue, according to the criteria S (408 MHz) > 5 Jy, -30 < Dec < 10 degrees, |b| > 10 degrees. The sample is selected to have similar properties to the northern 3CR revised sample, and to be visible to a combination of existing northern telescopes such as the Very Large Array radio interferometer and large southern hemisphere telescope facilities. The sample contains 178 sources, of which spectroscopic redshifts are available in the literature for 128. For the remaining 50 sources, new radio imaging, optical imaging and spectroscopic observations are presented to identify the host galaxies and determine their redshifts. With these new observations the total sample is 100% optically identified and redshifts are available for 174 (98%) of the sources. The sample consists of one starburst galaxy, one Seyfert galaxy, 127 radio galaxies and 49 quasars. Basic properties of the sample, such as the distributions of the quasar and radio galaxy populations in redshift and their locations on the radio power versus linear size (P-D) diagram, show no significant differences from the revised 3CR sample. The equatorial location and the high spectroscopic completeness of this sample make it a valuable resource for detailed studies of the nature and environments of these important objects with the new generation of southern hemisphere telescopes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا