Do you want to publish a course? Click here

Photometric detection of high proper motions in dense stellar fields using Difference Image Analysis

50   0   0.0 ( 0 )
 Added by ul
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Difference Image Analysis (DIA) of the images obtained by the Optical Gravitational Lensing Experiment (OGLE-II) revealed a peculiar artifact in the sample of stars proposed as variable by Wozniak (2000) in one of the Galactic bulge fields: the occurrence of pairs of candidate variables showing anti-correlated light curves monotonic over a period of 3 years. This effect can be understood, quantified and related to the stellar proper motions. DIA photometry supplemented with a simple model offers an effective and easy way to detect high proper motion stars (HPM stars) in very dense stellar fields, where conventional astrometric searches are extremely inefficient.



rate research

Read More

202 - S. Kozlowski 2006
We present a proper motion mini-survey of 35 fields in the vicinity of Baade window, (l, b) = (1 deg, -4 deg), sampling roughly a 5 x 2.5 deg region of the Galactic bar. Our second epoch observations collected with the ACS/HRC instrument on board the Hubble Space Telescope were combined with the archival WFPC2/PC images. The resulting time baselines are in the range of 4 - 8 years. Precise proper motions of 15,863 stars were determined in the reference frame defined by the mean motion of stars with magnitudes between I_F814W = 16.5 - 21.5 along the line of sight. We clearly detect small gradients in proper motion dispersions (sigma_l, sigma_b) ~ (3.0, 2.5) mas/yr, and in the amount of anisotropy (sigma_l/sigma_b ~ 1.2). Both the longitude dispersion sigma_l and its ratio to the vertical motion sigma_b increase toward the Galactic plane. The decline of the anisotropy ratio sigma_l/sigma_b toward the minor axis of the bulge is mostly due to increasing sigma_b. We also find, for the first time, a significant negative covariance term in the transverse velocity field sigma_lb/(sigma_l*sigma_b) ~ -0.10. Our results extend by a factor of ~15 the number of the Galactic bar fields with good proper motion dispersions.
Context: Understanding the source of systematic errors in photometry is essential for their calibration. Aims: We investigate how photometry performed on difference images can be influenced by errors in the photometric scale factor. Methods: We explore the equations for difference image analysis (DIA) and we derive an expression describing how errors in the difference flux, the photometric scale factor and the reference flux are propagated to the object photometry. Results: We find that the error in the photometric scale factor is important, and while a few studies have shown that it can be at a significant level, it is currently neglected by the vast majority of photometric surveys employing DIA. Conclusions: Minimising the error in the photometric scale factor, or compensating for it in a post-calibration model, is crucial for reducing the systematic errors in DIA photometry.
In HST Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in the Magellanic Clouds centered on background quasars. We used these data to determine the proper motions of the LMC and SMC to better than 5% and 15% respectively. The results had a number of unexpected implications for the Milky Way-LMC-SMC system. The implied three-dimensional velocities were larger than previously believed and close to the escape velocity in a standard 10^12 solar mass Milky Way dark halo, implying that the Clouds may be on their first passage. Also, the relative velocity between the LMC and SMC was larger than expected, leaving open the possibility that the Clouds may not be bound to each other. To further verify and refine our results we requested an additional epoch of data in Cycle 16 which is being executed with WFPC2/PC due to the failure of ACS. We present the results of an ongoing analysis of these WFPC2 data which indicate good consistency with the two-epoch results.
New astrometric reductions of the US Naval Observatory CCD Astrograph Catalog (UCAC) all-sky observations were performed from first principles using the TGAS stars in the 8 to 11 magnitude range as reference star catalog. Significant improvements in the astrometric solutions were obtained and the UCAC5 catalog of mean positions at a mean epoch near 2001 was generated. By combining UCAC5 with Gaia DR1 data new proper motions on the Gaia coordinate system for over 107 million stars were obtained with typical accuracies of 1 to 2 mas/yr (R = 11 to 15 mag), and about 5 mas/yr at 16th mag. Proper motions of most TGAS stars are improved over their Gaia data and the precision level of TGAS proper motions is extended to many millions more, fainter stars. External comparisons were made using stellar cluster fields and extragalactic sources. The TGAS data allow us to derive the limiting precision of the UCAC x,y data, which is significantly better than 1/100 pixel.
In searches for planetary transits in the field, well over half of the survey stars are typically giants or other stars that are too large to permit straightforward detection of planets. For all-sky searches of bright V<~11 stars, the fraction is ~90%. We show that the great majority of these contaminants can be removed from the sample by analyzing their reduced proper motions (RPMs): giants have much lower RPMs than dwarfs of the same color. We use Hipparcos data to design a RPM selection function that eliminates most evolved stars, while rejecting only 9% of viable transit targets. Our method can be applied using existing or soon-to-be-released all-sky data to stars V<12.5 in the northern hemisphere and V<12 in the south. The method degrades at fainter magnitudes, but does so gracefully. For example, at V=14 it can still be used to eliminate giants redward of V-I~0.95, that is, the blue edge of the red giant clump.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا