Do you want to publish a course? Click here

Starburst Clusters in Galactic Nuclei

55   0   0.0 ( 0 )
 Added by Donald F. Figer
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galactic nuclei often harbor a disproportionately large amount of star formation activity with respect to their surrounding disks. Not coincidentally, the density of molecular material in galactic nuclei is often also much greater than that in disks (Table 1 in Kennicutt 1998). The interplay between rich populations of young stars and dense molecular environments is evident in our own Galactic center, which hosts over 10% of Galactic star formation activity within only $<$0.1% of the volume of the Galactic disk. Data obtained with the VLA and HST reveal a variety of star forming sites in the Galactic Center, including a substantial population of stars that are formed in very dense and massive clusters, while other stars are formed in somewhat sparsely populated associations of massive stars. Indeed, three of the stellar clusters are the most massive and densest in the Galaxy. In this paper, we discuss the Galactic center environment and its compact young star clusters, and compare them to their counterparts in star forming galactic nuclei, concluding that dense molecular environments and large velocity dispersions combine to alter star formation activity in both cases, particularly as regards massive young clusters.



rate research

Read More

We model the triggering of Active Galactic Nuclei (AGN) in galaxy clusters using the semi- analytic galaxy formation model SAGE (?). We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with that of AGN and galaxies with intense star formation from a sample of low-redshift, relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if $2.5times10^{-14} < P_{ram} < 2.5times10^{-13}$ Pa and $P_{ram} > 2P_{internal}$; this is consistent with expectations from hydrodynamical simulations of ram-pressure induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.
We present the analysis of the emission line galaxies members of 46 low redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey, Fasano et al. 2006). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star forming galaxies and classified employing diagnostic diagrams. We have examined the emission line properties and frequencies of star forming galaxies, transition objects and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency with respect to control samples, and by a systematically lower Balmer emission line equivalent width and luminosity (up to one order of magnitude in equivalent width with respect to control samples for transition objects) that implies a lower amount of ionised gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (approx. 10 - 20% of all emission line galaxies) is detected among WINGS cluster galaxies. With respect to Hii sources they are a factor of approx. 1.5 more frequent than (or at least as frequent as) in control samples. Transition objects and LINERs in cluster are most affected in terms of line equivalent width by the environment and appear predominantly consistent with retired galaxies. Shock heating can be a possible gas excitation mechanism able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks.
We study the Polycyclic Aromatic Hydrocarbons (PAH) bands, ionic emission lines, and Mid-infrared continuum properties, in a sample of 171 emission line galaxies taken from literature plus 15 new active galactic nuclei (AGN) Spitzer spectra. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T=150-300K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7$mu$m) and the forbidden emission lines of [Si II] 34.8$mu$m, [Ar II] 6.9, [S III] 18.7 and 33.4 were detected in all the Starbursts and in ~80% of the Seyfert~2. Taking under consideration only the PAH bands at 7.7$mu$m, 11.3$mu$m, and 12.7$mu$m we find they are present in ~80% of the Seyfert 1, while only half of this type of activity show the 6.2$mu$m and 8.6 PAH bands. The observed intensities ratios for neutral and ionized PAHs (6.2/7.7 x 11.3/7.7) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH (> 180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7) and the neutral PAH bands (8.6 and 11.3) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 and 11.3 bands is nearly constant with the increase of [Ne III]15.5/[Ne II], indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence with [Ne III]/[Ne II], suggesting that the PAH, emitting either ionized (7.7) or neutral (11.3) bands, may be destroyed with the increase of the hardness of the radiation field.
The energy density of energetic protons, U_p, in several nearby starburst nuclei (SBNs) has been directly deduced from gamma-ray measurements of the radiative decay of neutral pions produced in interactions with ambient protons. Lack of sufficient sensitivity and spatial resolution makes this direct deduction unrealistic in the foreseeable future for even moderately distant SBNs. A more viable indirect method for determining U_p in star-forming galaxies is to use its theoretically based scaling to the energy density of energetic electrons, U_e, which can be directly deduced from radio synchrotron and possibly also nonthermal hard X-ray emission. In order to improve the quantitative basis and diagnostic power of this leptonic method we reformulate and clarify its main aspects. Doing so we obtain a basic expression for the ratio U_p/U_e in terms of the proton and electron masses and the power-law indices that characterize the particle spectral distributions in regions where the total particle energy density is at equipartition with that of the mean magnetic field. We also express the field strength and the particle energy density in the equipartition region in terms of the regions size, mean gas density, IR and radio fluxes, and distance from the observer, and determine values of U_p in a sample of nine nearby and local SBNs.
We study galaxies that host both nuclear star clusters and active galactic nuclei (AGN) implying the presence of a massive black hole. We select a sample of 176 galaxies with previously detected nuclear star clusters that range from ellipticals to late-type spirals. We search for AGN in this sample using optical spectroscopy and archival radio and X-ray data. We find galaxies of all Hubble types and with a wide range of masses (10^9-11 solar masses) hosting both AGN and nuclear star clusters. From the optical spectra, we classify 10% of the galaxies as AGN and an additional 15% as composite, indicating a mix of AGN and star-formation spectra. The fraction of nucleated galaxies with AGN increases strongly as a function of galaxy and nuclear star cluster mass. For galaxies with both a NC and a black hole, we find that the masses of these two objects are quite similar. However, non-detections of black holes in Local Group nuclear star clusters show that not all clusters host black holes of similar masses. We discuss the implications of our results for the formation of nuclear star clusters and massive black holes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا