No Arabic abstract
We have spatially and spectrally resolved the sources of X-ray emission from the X-ray faint S0 galaxy NGC 1553 using an observation from the Chandra X-ray Observatory. The majority (70%) of the emission in the 0.3 - 10.0 keV band is diffuse, and the remaining 30% is resolved into 49 discrete sources. Most of the discrete sources associated with the galaxy appear to be low mass X-ray binaries (LMXBs). The luminosity function of the LMXB sources is well-fit by a broken power-law with a break luminosity comparable to the Eddington luminosity for a 1.4 solar mass neutron star. It is likely that those sources with luminosities above the break are accreting black holes and those below are mostly neutron stars in binary systems. Spectra were extracted for the total emission, diffuse emission, and sum of the resolved sources; the spectral fits for all require a model including both a soft and hard component. The diffuse emission is predominately soft while the emission from the sources is mostly hard. Approximately 24% of the diffuse emission arises from unresolved LMXBs, with the remainder resulting from thermal emission from hot gas. There is a very bright source at the projected position of the nucleus of the galaxy. The spectrum and luminosity derived from this central source are consistent with it being an AGN; the galaxy also is a weak radio source. Finally, the diffuse emission exhibits significant substructure with an intriguing spiral feature passing through the center of the galaxy. The X-ray spectrum and surface brightness of the spiral feature are consistent with adiabatic or shock compression of ambient gas, but not with cooling. This feature may be due to compression of the hot interstellar gas by radio lobes or jets associated with the AGN.
We present six monitoring observations of the starburst galaxy NGC 2146 using the Chandra X-ray Observatory. We have detected 67 point sources in the 8.7 x 8.7 field of view of the ACIS-S detector. Six of these sources were Ultra-Luminous X-ray Sources, the brightest of which has a luminosity of 5 x 10^{39} ergs s^{-1}. One of the source, with a luminosity of ~1 x 10^{39} ergs s^{-1}, is coincident with the dynamical center location, as derived from the ^{12}CO rotation curve. We suggest that this source may be a low-luminosity active galactic nucleus. We have produced a table where the positions and main characteristics of the Chandra-detected sources are reported. The comparison between the positions of the X-ray sources and those of compact sources detected in NIR or radio does not indicate any definite counterpart. Taking profit of the relatively large number of sources detected, we have derived a logN-logS relation and a luminosity function. The former shows a break at ~10^{-15} ergs cm^{-2} s^{-1}, that we interpret as due to a detection limit. The latter has a slope above the break of 0.71, which is similar to those found in the other starburst galaxies. In addition, a diffuse X-ray emission has been detected in both, soft (0.5--2.0keV) and hard (2.0--10.0keV), energy bands. The spectra of the diffuse component has been fitted with a two (hard and soft) components. The hard power-law component, with a luminosity of ~4 x 10^{39} ergs s^{-1}, is likely originated by unresolved point sources, while the soft component is better described by a thermal plasma model with a temperature of 0.5keV and high abundances for Mg and Si.
The Nobeyama Millimeter Array (NMA) has been used to make aperture synthesis CO(1-0) observations of the post-starburst galaxy NGC 5195. CO(1-0) and HCN(1-0) observations of NGC 5195 using the Nobeyama 45 m telescope are also presented. High-resolution (1.9 x 1.8 or 86 pc x 81 pc at D = 9.3 Mpc) NMA maps show a strong concentration of CO emission toward the central a few 100 pc region of NGC 5195, despite the fact that the current massive star formation is suppressed there. The HCN-to-CO integrated intensity ratio on the brightness temperature scale, R_{HCN/CO}, is about 0.02 within the central r < 400 pc region. This R_{HCN/CO} is smaller than those in starburst regions by a factor of 5 - 15. These molecular gas properties would explain why NGC 5195 is in a post-starburst phase; most of the dense molecular cores (i.e., the very sites of massive star formation) have been consumed away by a past starburst event, and therefore a burst of massive star formation can no longer last, although a large amount of low density gas still exists. We propose that dense molecular gas can not be formed from remaining diffuse molecular gas because the molecular gas in the center of NGC 5195 is too stable to form dense cores via gravitational instabilities of diffuse molecular gas.
We have studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project Observation. With a total exposure time of ~1.1 Ms, we constructed the XLF down to a limiting luminosity of ~10^36 erg/s, much deeper than typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL propto L^{-2.2pm0.4} above 5.5x10^37 erg/s to dN/dL propto L^{-1.0pm0.1} below it, though we could not rule out a fit with a higher break at ~1.6x10^38 erg/s. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrupted GCs in the inner region. The XLF in the outer region is probably the XLF of primordial field LMXBs, exhibiting dN/dL propto L^{-1.2pm0.1} up to a break close to the Eddington limit of neutron star LMXBs (~1.7x10^38 erg/s). The break of the GC LMXB XLF is lower, at ~1.1x10^37 erg/s. We also confirm previous findings that the metal-rich/red GCs are more likely to host LMXBs than the metal-poor/blue GCs, which is more significant for more luminous LMXBs, and that more massive GCs are more likely to host LMXBs.
(Abridged) We conducted a Chandra ACIS observation of the nearby Sculptor Group Sd galaxy NGC 7793. At the assumed distance to NGC 7793 of 3.91 Mpc, the limiting unabsorbed luminosity of the detected discrete X-ray sources (0.2-10.0 keV) is approximately 3x10^36 ergs s^-1. A total of 22 discrete sources were detected at the 3-sigma level or greater including one ultra-luminous X-ray source (ULX). Based on multiwavelength comparisons, we identify X-ray sources coincident with one SNR, the candidate microquasar N7793-S26, one HII region and two foreground Galactic stars. We also find that the X-ray counterpart to the candidate radio SNR R3 is time-variable in its X-ray emission: we therefore rule out the possibility that this source is a single SNR. A marked asymmetry is seen in the distribution of the discrete sources with the majority lying in the eastern half of this galaxy. All of the sources were analyzed using quantiles to estimate spectral properties and spectra of the four brightest sources (including the ULX) were extracted and analyzed. We searched for time-variability in the X-ray emission of the detected discrete sources using our measured fluxes along with fluxes measured from prior Einstein and ROSAT observations. From this study, three discrete X-ray sources are established to be significantly variable. A spectral analysis of the galaxys diffuse emission is characterized by a temperature of kT = 0.19-0.25 keV. The luminosity function of the discrete sources shows a slope with an absolute value of Gamma = -0.65+/-0.11 if we exclude the ULX. If the ULX is included, the luminosity function has a long tail to high L_X with a poor-fitting slope of Gamma = -0.62+/-0.2. The ULX-less slope is comparable to the slopes measured for the distributions of NGC 6946 and NGC 2403 but much shallower than the slopes measured for the distributions of IC 5332 and M83.
We present our results of the spectroscopic study of the lenticular galaxy NGC 4143 - an outskirt member of the Ursa Major cluster. Using the observations at the 6-m SAO RAS telescope with the SCORPIO-2 spectrograph and also the archive data of panoramic spectroscopy with the SAURON IFU at the WHT, we have detected an extended inclined gaseous disk which is traced up to a distance of about 3.5 kpc from the center, with a spin approximately opposite to the spin of the stellar disk. The galaxy images in the H-alpha and [NII]6583 emission lines obtained at the 2.5-m CMO SAI MSU telescope with the MaNGaL instrument have shown that the emission lines are excited by a shock wave. A spiral structure that is absent in the stellar disk of the galaxy is clearly seen in the brightness distribution of ionized-gas lines (H-alpha and [NII] from the MaNGaL data and [OIII] from the SAURON data). A complex analysis of both the Lick index distribution along the radius and of the integrated colors, including the ultraviolet measurements with the GALEX space telescope and the near-infrared measurements with the WISE space telescope, has shown that there has been no star formation in the galaxy, perhaps, for the last 10 Gyr. Thus, the recent external-gas accretion detected in NGC 4143 from its kinematics, was not accompanied by star formation, probably, due to an inclined direction of the gas inflow onto the disk.