Do you want to publish a course? Click here

Stellar Coronae with textit{XMM-Newton} RGS. II. X-ray Variability

123   0   0.0 ( 0 )
 Added by Marc Audard
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

First results from high-resolution coronal spectroscopy of flares with the Reflection Grating Spectrometers on board the textit{XMM-Newton} satellite are reviewed. Rotational modulation in the X-ray light curve of HR 1099 is discussed. Results from time-dependent spectroscopy of flares in the active stars HR 1099, AB Dor, YY Gem are also presented. Variations in the shape of the emission measure distributions, in the abundances and in the average density of the cool plasma are discussed.



rate research

Read More

First results from high-resolution coronal spectroscopy with the {it XMM-Newton} Reflection Grating Spectrometers (RGS) are reviewed. Five stellar systems (HR 1099, Capella, Procyon, YY Gem, AB Dor) have been observed. The emphasis of the present paper is on overall coronal structure. Elemental abundances in {it active stars} are found to be `anomalous in the sense that they tend to increase with increasing First Ionization Potential (FIP - i.e., signifying an inverse FIP effect). Coronal densities are measured at levels of a few times $10^{10}$ cm$^{-3}$ for cooler plasma, although there are indications for very high densities in the hotter plasma components.
We have been conducting a comprehensive survey of stellar coronae with the XMM-Newton Reflection Grating Spectrometers during the commissioning, calibration, verification, and guaranteed time phases of the mission, accompanied by simultaneous observations with the EPIC cameras and, for several targets, with the radio VLA and/or the VLBA. The principal aim of this project is threefold: i) To understand stellar coronal structure and composition by studying systematics in the coronae of stars with widely different levels of magnetic activity; ii) to investigate heating and particle acceleration physics during flares, their role in the overall coronal energy budget, and their possible role in the quiescent stellar emission; iii) to probe stellar coronal evolution by studying solar analogs of different ages. We report early results from this project.
We present high-resolution soft-X-ray spectra of the prototypical Seyfert 2 galaxy, NGC 1068, taken with XMM-Newton RGS and Chandra LETGS. Its rich emission-line spectrum is dominated by recombination in a warm plasma (bright, narrow radiative recombination continua provide the ``smoking gun), which is photoionized by the inferred nuclear power-law continuum. Radiative decay following photoexcitation of resonant transitions is also significant. A self-consistent model of an irradiated cone of gas is capable of reproducing the hydrogenic/heliumlike ionic line series in detail. The radial ionic column densities we infer are consistent with absorption measurements (the warm absorber) in Seyfert 1 galaxies. This strongly suggests that the emission spectrum we observe from NGC 1068 emanates from its warm absorber. The observed extent of the ionization-cone/warm absorber in NGC 1068 of about 300 pc implies that a large fraction of the gas associated with generic warm absorbers may typically exist on the hundreds-of-parsec scale rather than much closer to the nucleus (e.g., less than a parsec). Spatially-resolved spectroscopy using the LETGS of two distinct emission regions yields two noticeably different spectra. We show that these differences are solely due to differing radial column densities. A fairly flat distribution in ionization parameter is necessary to explain the inferred radial ionic column densities of all spectra. This must primarily be due to a broad density distribution at each radius, spanning roughly 0.1-100 cm$^{-3}$. (Abridged)
We report the results of preliminary analysis of the XMM_Newton EPIC and RGS observations of the candidate black-hole binary LMC X-3 between February and June 2000. The observations covered both the soft and the hard X-ray spectral states. The hard-state spectra were dominated by a power-law component with a photon index Gamma = 1.9 +/- 0.1. The soft-state spectra consisted of a thermal component with a multi-colour disk temperature T_in = 0.9 keV and a power-law tail with Gamma ~ 2.5--2.7. The model in which the X-rays from LMC X-3 in the high-soft state are powered by a strong stellar wind from a massive companion is not supported by the small line-of-sight absorption (n_H <~ 10^{21} cm^{-2}) deduced from the RGS data. The transition from the soft to the hard state appears to be a continuous process associated with the changes in the mass-transfer rate.
The notion of source states characterizing the X-ray emission from black hole binaries has revealed to be a very useful tool to disentangle the complex spectral and aperiodic phenomenology displayed by those classes of accreting objects. We seek to use the same tools for Ultra-Luminous X-ray (ULX) sources. We analyzed the data from the longest observations obtained from the ULX source in NGC 5408 (NGC 5408 X-1) taken by XMM-Newton. We performed a study of the timing and spectral properties of the source. In accordance with previous studies on similar sources, the intrinsic energy spectra of the source are well described by a cold accretion disc emission plus a curved high-energy emission component. We studied the broad-band noise variability of the source and found an anti-correlation between the root mean square variability in the 0.0001-0.2Hz and intensity, similarly to what is observed in black-hole binaries during the hard states. We discuss the physical processes responsible for the X-ray features observed and suggest that NGC 5408 X-1 harbors a black hole accreting in an unusual bright hard-intermediate state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا