Do you want to publish a course? Click here

A New Radio Continuum Survey of the Sky at 1465 MHz between declinations -52 degrees and +68 degrees

63   0   0.0 ( 0 )
 Added by Camilo Tello
 Publication date 2000
  fields Physics
and research's language is English
 Authors C. Tello




Ask ChatGPT about the research

We have mapped the total sky brightness at 1465 MHz in two adjacent 60-degree declination bands with the portable 5.5-m parabolic reflector of the Galactic Emission Mapping (GEM) project, an on-going international collaboration to survey the radio continuum of the sky in decimeter and centimeter wavelengths. The observations were conducted from two locations, one in the USA and the other in Brazil, using a novel instrumental approach to overcome the well-known shortcomings of survey experiments. Our strategy consists of a 1-rpm rotating dish to circularly scan the sky at 30 degrees from zenith. The dish uses a rim-halo to re-direct the spillover sidelobes of its backfire helical feed toward the sky and the entire assembly has been enclosed inside a wire mesh ground shield in order to minimize and level out the contamination from the ground. The diffraction characteristics of this set-up have been succesfully modelled and undesired systematic striping across the observed bands has been carefully removed by a baseline propagation method which exploits the time-forward and time-backward intersections of the circular scans. The map displays nearly 300 hours of our best quality data taken with a HPBW of 5.4 degrees at a sensitivity of 20 mK.



rate research

Read More

We report the discovery of 152 new high proper motion systems (mu >= 0.4/yr) in the southern sky (Declination = -47 degrees to 00 degrees) brighter than UKST plate R_{59F} =16.5 via our SuperCOSMOS-RECONS (SCR) search. This paper complements Paper XII in The Solar Neighborhood series, which covered the region from Declination = -90 degrees to -47 degrees and discussed all 147 new systems from the southernmost phase of the search. Among the total of 299 systems from both papers, there are 148 (71 in Paper XII, 77 in this paper) new systems moving faster than 0.5/yr that are additions to the classic ``LHS (Luyten Half Second) sample. These constitute an 8% increase in the sample of all stellar systems with mu >= 0.5/yr in the southern sky. As in Paper XII, distance estimates are provided for the systems reported here based upon a combination of photographic plate magnitudes and 2MASS photometry, assuming all stars are on the main sequence. Two SCR systems from the portion of the sky included in this paper are anticipated to be within 10 pc, and an additional 23 are within 25 pc. In total, the results presented in Paper XII and here for this SCR sweep of the entire southern sky include five new systems within 10 pc and 38 more between 10 and 25 pc. The largest number of nearby systems have been found in the slowest proper motion bin, 0.6/yr > mu >= 0.4/yr, indicating that there may be a large population of low proper motion systems very near the Sun.
156 - J.C. Testori 2001
We describe the equipment, observational method and reduction procedure of an absolutely calibrated radio continuum survey of the South Celestial Hemisphere at a frequency of 1420 MHz. These observations cover the area 0h < R.A. < 24h for declinations less than -10 degree. The sensitivity is about 50 mK T_B (full beam brightness) and the angular resolution (HPBW) is 35.4, which matches the existing northern sky survey at the same frequency.
We report 1606 new proper motion systems in the southern sky (declinations -90 degrees to -47 degrees with 0.40 arcsec yr^-1 > mu >= 0.18 yr^-1. This effort is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion search to lower proper motions than reported in Papers VIII, X, XII, and XV in this series. Distance estimates are presented for the new systems, assuming that all stars are on the main sequence. We find that 31 systems are within 25 pc, including two systems -- SCR 0838-5855 and SCR 1826-6542 -- we anticipate to be within 10 pc. These new discoveries constitute a more than ten-fold increase in new systems found in the same region of sky searched for systems with mu >= 0.40 arcsec yr^-1, suggesting a happy hunting ground for new nearby slower proper motion systems in the region just north (declinations -47 degrees to 0 degrees, much of which has not been rigorously searched during previous efforts.
We compare the degrees of enumerability and the closed Medvedev degrees and find that many situations occur. There are nonzero closed degrees that do not bound nonzero degrees of enumerability, there are nonzero degrees of enumerability that do not bound nonzero closed degrees, and there are degrees that are nontrivially both degrees of enumerability and closed degrees. We also show that the compact degrees of enumerability exactly correspond to the cototal enumeration degrees.
We measure the renormalized effective mass (m*) of interacting two-dimensional electrons confined to an AlAs quantum well while we control their distribution between two spin and two valley subbands. We observe a marked contrast between the spin and valley degrees of freedom: When electrons occupy two spin subbands, m* strongly depends on the valley occupation, but not vice versa. Combining our m* data with the measured spin and valley susceptibilities, we find that the renormalized effective Lande g-factor strongly depends on valley occupation, but the renormalized conduction-band deformation potential is nearly independent of the spin occupation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا