Do you want to publish a course? Click here

Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 from the Nuclear Stellar Dynamics

67   0   0.0 ( 0 )
 Added by Gary A. Bower
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the nuclear stellar dynamics of the SB0 galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V = 70 km/s at a distance of 0.1 arcsec = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 1.4) x 10^7 M_sun and mass-to-light ratio (M/L_V) of 5.38 +/- 0.08, and the goodness-of-fit (chi^2) is insensitive to reasonable values for the galaxys inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10^7 M_sun and M/L_V of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.



rate research

Read More

Small kinematically-decoupled stellar discs with scalelengths of a few tens of parsec are known to reside in the centre of galaxies. Different mechanisms have been proposed to explain how they form, including gas dissipation and merging of globular clusters. Using archival Hubble Space Telescope imaging and ground-based integral-field spectroscopy, we investigated the structure and stellar populations of the nuclear stellar disc hosted in the interacting SB0 galaxy NGC 1023. The stars of the nuclear disc are remarkably younger and more metal rich with respect to the host bulge. These findings support a scenario in which the nuclear disc is the end result of star formation in metal enriched gas piled up in the galaxy centre. The gas can be of either internal or external origin, i.e. from either the main disc of NGC 1023 or the nearby satellite galaxy NGC 1023A. The dissipationless formation of the nuclear disc from already formed stars, through the migration and accretion of star clusters into the galactic centre is rejected.
The stellar kinematics of the dwarf elliptical galaxy NGC 4486B have been measured in seeing sigma_* = .22 arcsec with the Canada-France-Hawaii Telescope. Lauer et al. 1996, ApJ, 471, L79 have shown that NGC 4486B is similar to M31 in having a double nucleus. We show that it also resembles M31 in its kinematics. The velocity dispersion gradient is very steep: sigma increases from 116 +- 6 km/s at r = 2 - 6 to 281 +- 11 km/s at the center. This is much higher than expected for an elliptical galaxy of absolute magnitude M_B = -16.8: NGC 4486B is far above the scatter in the Faber-Jackson correlation between sigma and bulge luminosity. Therefore the King core mass-to-light ratio, M/L_V = 20, is unusually high compared with normal values for old stellar populations. We construct dynamical models with isotropic velocity dispersions and show that they reproduce black hole (BH) masses derived by more detailed methods. We also fit axisymmetric, three-integral models. Isotropic models imply that NGC 4486B contains a central dark object, probably a BH, of mass M_BH = 6^{+3}_{-2} x 10^8 M_sun. However, anisotropic models fit the data without a BH if the ratio of radial to azimuthal dispersions is ~ 2 at 1. Therefore this is a less strong BH detection than the ones in M31, M32, and NGC 3115. A 6 x 10^8 M_sun BH is 9 % of the mass M_bulge in stars; even if M_BH is smaller than the isotropic value, M_BH/M_bulge is likely to be unusually large. Double nuclei are a puzzle because the dynamical friction timescales for self-gravitating star clusters in orbit around each other are short. Since both M31 and NGC 4486B contain central dark objects, our results support models in which the survival of double nuclei is connected with the presence of a BH (e. g., Tremaine 1995, AJ, 110, 628).
We present results from HST/STIS long-slit spectroscopy of the gas motions in the nuclear region of the Seyfert 2 galaxy NGC 5252. The observed velocity field is consistent with gas in regular rotation with superposed localized patches of disturbed gas. The dynamics of the circumnuclear gas can be accurately reproduced by adding to the stellar mass component a compact dark mass of MBH = 0.95 (-0.45;+1.45) 10E9 M(sun), very likely a supermassive black hole. Contrarily to results obtained in similar studies rotational broadening is sufficient to reproduce also the behaviour of line widths. The MBH estimated for NGC 5252 is in good agreement with the correlation between MBH and bulge mass. The comparison with the MBH vs sigma relationship is less stringent (mostly due to the relatively large error in sigma); NGC 5252 is located above the best fit line by between 0.3 and 1.2 dex, i.e. 1 - 4 times the dispersion of the correlation. Both the galaxys and MBH of NGC 5252 are substantially larger than those usually estimated for Seyfert galaxies but, on the other hand, they are typical of radio-quiet quasars. Combining the determined MBH with the hard X-ray luminosity, we estimate that NGC 5252 is emitting at a fraction ~ 0.005 of L(Edd). In this sense, this active nucleus appears to be a quasar relic, now probably accreting at a low rate, rather than a low black hole mass counterpart of a QSO.
The Suzaku AGN Spin Survey is designed to determine the supermassive black hole spin in six nearby active galactic nuclei (AGN) via deep Suzaku stares, thereby giving us our first glimpse of the local black hole spin distribution. Here, we present an analysis of the first target to be studied under the auspices of this Key Project, the Seyfert galaxy NGC 3783. Despite complexity in the spectrum arising from a multi-component warm absorber, we detect and study relativistic reflection from the inner accretion disk. Assuming that the X-ray reflection is from the surface of a flat disk around a Kerr black hole, and that no X-ray reflection occurs within the general relativistic radius of marginal stability, we determine a lower limit on the black hole spin of a > 0.88 (99% confidence). We examine the robustness of this result to the assumption of the analysis, and present a brief discussion of spin-related selection biases that might affect flux-limited samples of AGN.
We present XMM-Newton observations of the Chandra-detected nuclear X-ray source in NGC 4561. The hard X-ray spectrum can be described by a model composed of an absorbed power-law with Gamma= 2.5^{+0.4}_{-0.3}, and column density N_H=1.9^{+0.1}_{-0.2} times 10^{22} atoms cm^{-2}. The absorption corrected luminosity of the source is L(0.2 - 10.0 keV) = 2.5 times 10^{41} ergs s^{-1}, with bolometric luminosity over 3 times 10^{42} ergs s^{-1}. Based on the spectrum and the luminosity, we identify the nuclear X-ray source in NGC 4561 to be an AGN, with a black hole of mass M_BH > 20,000 solar masses. The presence of a supermassive black hole at the center of this bulge-less galaxy shows that black hole masses are not necessarily related to bulge properties, contrary to the general belief. Observations such as these call into question several theoretical models of BH--galaxy co-evolution that are based on merger-driven BH growth; secular processes clearly play an important role. Several emission lines are detected in the soft X-ray spectrum of the source which can be well parametrized by an absorbed diffuse thermal plasma with non-solar abundances of some heavy elements. Similar soft X-ray emission is observed in spectra of Seyfert 2 galaxies and low luminosity AGNs, suggesting an origin in the circumnuclear plasma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا