No Arabic abstract
We present the temporal analysis of X-ray observations of the radio-loud Narrow-Line Seyfert 1 galaxy (NLS1) PKS 0558-504 obtained during the XMM-Newton Calibration and Performance Verification (Cal/PV) phase. The long term light curve is characterized by persistent variability with a clear tendency for the X-ray continuum to harden when the count rate increases. Another strong correlation on long time scales has been found between the variability in the hard band and the total flux. On shorter time scales the most relevant result is the presence of smooth modulations, with characteristic time of ~ 2 hours observed in each individual observation. The short term spectral variability turns out to be rather complex but can be described by a well defined pattern in the hardness ratio-count rate plane.
We present X-ray observations of the Narrow-Line Seyfert 1 galaxy PKS 0558-504 obtained with RXTE during a 1-year monitoring campaign. This source, which is one of the very few radio-loud NLS1 galaxies, shows strong X-ray flux variability on time scales of weeks-months accompanied by spectral variability. The main goal of this study is to investigate the spectral variability with model-independent methods and time-resolved spectroscopy in order to shed light on the origin of the X-rays. The main results can be summarized as follows: 1) The flux typically changes by a factor of 1.5-2 on time scales of 10-30 days, with few extreme events where the flux increases by a factor of ~4 in 3 days. 2) We do not observe any large amplitude, flux related spectral variations. During the flux variations, the spectrum varies mainly in normalization and not in shape. We do observe some small amplitude spectral variations, which do not correlate with flux, although there is a hint of spectral hardening as the source brightens. 3) There is no evidence for reprocessing features such as the Fe Kalpha line or a Compton hump. We argue that PKS 0558-504 is a peculiar object that appears to be different from most of the radio-quiet and radio-loud AGN. If a jet is responsible for the bulk of the X-rays, it must operate in an unusual way. If instead a corona is responsible for the X-rays, the system might be a large-scale analog of the Galactic black holes in the transient intermediate state.
We present XMM-Newton observations of the bright quasar PKS0558-504. The 0.2-10 keV spectrum is dominated by a large, variable soft X-ray excess. The fastest flux variations imply accretion onto a Kerr black hole. The XMM-Newton data suggest the presence of a `big blue bump in PKS0558-504 extending from the optical band to ~3 keV. The soft X-ray spectrum shows no evidence for significant absorption or emission-line features. The most likely explanation for the hot big blue bump is Comptonization by the multi-temperature corona of a thermal accretion disc running at a high accretion rate.
PHL 1092 is a z~0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ~260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope alpha_ox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. Our monitoring program demonstrates that the alpha_ox variability in PHL 1092 is entirely driven by long-term X-ray flux changes. We apply a series of physically-motivated models with the goal of explaining the UV-to-X-ray spectral energy distribution (SED) and the extreme X-ray and alpha_ox variability. We consider three possible models: i) A breathing corona scenario in which the size of the X-ray emitting corona is correlated with the X-ray flux. In this case, the lowest X-ray flux states of PHL 1092 are associated with an almost complete collapse of the X-ray corona down to the marginal stable orbit; ii) An absorption scenario in which the X-ray flux variability is entirely due to intervening absorption. If so, PHL 1092 is a quasar with standard X-ray output for its optical luminosity, appearing as X-ray weak at times due to absorption; iii) A disc-reflection-dominated scenario in which the X-ray emitting corona is confined within a few gravitational radii from the black hole at all times. In this case, the intrinsic variability of PHL 1092 only needs to be a factor of ~10 rather than the observed factor of ~260.
Starting from XMM-Newton EPIC-PN data, we present the X-ray variability characteristics of PKS 2155-304 using a simple analysis of the excess variance, xs, and of the fractional rms variability amplitude, fvar. The scatter in xs and fvar, calculated using 500 s long segments of the light curves, is smaller than the scatter expected for red noise variability. This alone does not imply that the underlying process responsible for the variability of the source is stationary, since the real changes of the individual variance estimates are possibly smaller than the large scatters expected for a red noise process. In fact the averaged xs and fvar, reducing the fluctuations of the individual variances, chang e with time, indicating non-stationary variability. Moreover, both the averaged sqxs (absolute rms variability amplitude) and fvar show linear correlation with source flux but in an opposite sense: sqxs correlates with flux, but fvar anti-correlates with flux. These correlations suggest that the variability process of the source is strongly non-stationary as random scatters of variances should not yield any correlation. fvar spectra were constructed to compare variability amplitudes in different energy bands. We found that the fractional rms variability amplitude of the source, when significant variability is observed, increases logarithmically with the photon energy, indicating significant spectral variability. The point-to-point variability amplitude may also track this trend, suggesting that the slopes of the power spectral density of the source are energy-independent. Using the normalized excess variance the black hole mass of pks was estimated to be about $1.45 times 10^8 M_{bigodot}$. This is compared and contrasted with the estimates derived from measurements of the host galaxies.
We present the characteristics of the X-ray variability of stars in the cluster NGC2516 as derived from XMM-Newton/EPIC/pn data. The X-ray variations on short (hours), medium (months), and long (years) time scales have been explored. We detected 303 distinct X-ray sources by analysing six EPIC/pn observations; 194 of them are members of the cluster. Stars of all spectral types, from the early-types to the late-M dwarfs, were detected. The Kolmogorov-Smirnov test applied to the X-ray photon time series shows that, on short time scales, only a relatively small fraction (ranging from 6% to 31% for dG and dF, respectively) of the members of NGC2516 are variable with a confidence level $geq$99%; however, it is possible that the fraction is small only because of the poor statistics. The time X-ray amplitude distribution functions (XAD) of a set of dF7-dK2 stars, derived on short (hours) and medium (months) time scales, seem to suggest that medium-term variations, if present, have a much smaller amplitude than those on short time scales; a similar result is also obtained for dK3-dM stars. The amplitude variations of late-type stars in NGC2516 are consistent with those of the coeval Pleiades stars. Comparing these data with those of ROSAT/PSPC, collected 7-8 years earlier, and of ROSAT/HRI, just 4-5 years earlier, we find no evidence of significant variability on the related time scales, suggesting that long-term variations due to activity cycles similar to the solar cycle are not common among young stars. Indications of spectral variability was found in one star whose spectra at three epochs were available.