Do you want to publish a course? Click here

X-ray imaging of the Seyfert 2 galaxy Circinus with Chandra

73   0   0.0 ( 0 )
 Added by Rita M. Sambruna
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from the zeroth-order imaging of a Chandra HETGS observation of the nearby Seyfert 2 galaxy Circinus. Twelve X-ray sources were detected in the ACIS-S image of the galaxy, embedded in diffuse X-ray emission. The latter shows a prominent (~18arcsec) soft ``plume in the N-W direction, coincident with the [OIII] ionization cone. The radial profiles of the brightest X-ray source at various energies are consistent with an unresolved (FWHM ~0.8arcsec) component, which we identify as the active nucleus, plus two extended components with FWHMs ~ 2.3arcsec and 18arcsec, respectively. In a radius of 3arcsec, the nucleus contributes roughly the same flux as the extended components at the softest energies (< 2 keV). However, at harder energies (> 2 keV), the contribution of the nucleus is dominant. The zeroth-order ACIS spectrum of the nucleus exhibits emission lines at both soft and hard X-rays, including a prominent Fe Kalpha line at 6.4 keV, showing that most of the X-ray lines previously detected with ASCA originate in a compact region (<15 pc). Based on its X-ray spectrum, we argue that the 2.3arcsec extended component is scattered nuclear radiation from nearby ionized gas. The large-scale extended component includes the emission from the N-W plume and possibly from the outer starburst ring.



rate research

Read More

Results from a 60 ks Chandra HETGS observation of the nearby Seyfert 2 Circinus are presented. The spectrum shows a wealth of emission lines at both soft and hard X-rays, including lines of Ne, Mg, Si, S, Ar, Ca, and Fe, and a prominent Fe Kalpha line at 6.4 keV. We identify several of the He-like components and measure several of the Lyman lines of the H-like ions. The lines profiles are unresolved at the limited signal-to-noise ratio of the data. Our analysis of the zeroth-order image in a companion paper constrains the size of the emission region to be 20-60 pc, suggesting that emission within this volume is almost entirely due to the reprocessing of the obscured central source. Here we show that a model containing two distinct components can reproduce almost all the observed properties of this gas. The ionized component can explain the observed intensities of the ionized species, assuming twice-solar composition and an N propto r^{-1.5} density distribution. The neutral component is highly concentrated, well within the 0.8arcsec point source, and is responsible for almost all of the observed Kalpha (6.4 keV) emission. Circinus seems to be different than Mkn~3 in terms of its gas distribution.
We present a spectral and imaging analysis of the XMM-Newton and Chandra observations of the Seyfert 2 galaxy ESO138-G001, with the aim of characterizing the circumnuclear material responsible for the soft (0.3-2.0 keV) and hard (5-10 keV) X-ray emission. We confirm that the source is absorbed by Compton-thick gas. However, if a self-consistent model of reprocessing from cold toroidal material is used (MYTorus), a possible scenario requires the absorber to be inhomogenous, its column density along the line of sight being larger than the average column density integrated over all lines- of-sight through the torus. The iron emission line may be produced by moderately ionised iron (FeXII-FeXIII), as suggested by the shifted centroid energy and the low K{beta}/K{alpha} flux ratio. The soft X-ray emission is dominated by emission features, whose main excitation mechanism appears to be photoionisation, as confirmed by line diagnostics and the use of self-consistent models (CLOUDY).
The Circinus galaxy is one of the nearest obscured AGN, making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandras high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton-scattering by an optically-thick torus, where the intrinsic spectrum is a powerlaw of photon index $Gamma = 2.2-2.4$, the torus has an equatorial column density of $N_{rm H} = (6-10)times10^{24}$cm$^{-2}$ and the intrinsic AGN $2-10$ keV luminosity is $(2.3-5.1)times 10^{42}$ erg/s. These values place Circinus along the same relations as unobscured AGN in accretion rate-vs-$Gamma$ and $L_X$-vs-$L_{IR}$ phase space. NuSTARs high sensitivity and low background allow us to study the short time-scale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the the spectral fitting results.
77 - K. Pounds , S. Vaughan 2006
We use the full broad-band XMM-Newton EPIC data to examine the X-ray spectrum of the nearby Seyfert 2 galaxy NGC 1068, previously shown to be complex with the X-ray continuum being a sum of components reflected/scattered from cold (neutral) and warm (ionised) matter, together with associated emission line spectra. We quantify the neutral and ionised reflectors in terms of the luminosity of the hidden nucleus. Both are relatively weak, a result we interpret on the Unified Seyfert Model by a near side-on view to the putative torus, reducing the visibility of the illuminated inner surface of the torus (the cold reflector), and part of the ionised outflow. A high inclination in NGC 1068 also provides a natural explanation for the large (Compton-thick) absorbing column in the line-of-sight to the nucleus. The emission line fluxes are consistent with the strength of the neutral and ionised continuum components, supporting the robustness of the spectral model.
110 - Xinwen Shu 2012
We present the result of the Chandra high-resolution observation of the Seyfert~2 galaxy NGC 7590. This object was reported to show no X-ray absorption in the low-spatial resolution ASCA data. The XMM observations show that the X-ray emission of NGC 7590 is dominated by an off-nuclear ultra-luminous X-ray source (ULX) and an extended emission from the host galaxy, and the nucleus is rather weak, likely hosting a Compton-thick AGN. Our recent Chandra observation of NGC 7590 enables to remove the X-ray contamination from the ULX and the extended component effectively. The nuclear source remains undetected at ~4x10^{-15} erg/s/cm^-2 flux level. Although not detected, Chandra data gives a 2--10 keV flux upper limit of ~6.1x10^{-15} erg/s/cm^-2 (at 3 sigma level), a factor of 3 less than the XMM value, strongly supporting the Compton-thick nature of the nucleus. In addition, we detected five off-nuclear X-ray point sources within the galaxy D25 ellipse, all with 2 -- 10 keV luminosity above 2x10^{38} erg/s (assuming the distance of NGC 7590). Particularly, the ULX previously identified by ROSAT data was resolved by Chandra into two distinct X-ray sources. Our analysis highlights the importance of high spatial resolution images in discovering and studying ULXs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا