No Arabic abstract
Detailed VLA observations have been gathered for a number of sources classified as either BL Lacs or galaxies, derived from the REX survey. We focus in particular on the sources identified by us, for which we have in hand homogeneous optical data, to study in more detail than allowed by the NVSS the radio properties of these sources in the framework of AGN unified models.
The advent of Fermi is changing our understanding on the radio and gamma-ray emission in Active Galactic Nuclei. In fact, contrary to previous campaigns, Fermi mission reveals that BL Lac objects are the most abundant emitters in gamma-ray band. However, since they are relatively weak sources, most of their parsec scale structure as their multifrequency properties are poorly understood and/or not systematically investigated. Our main goal is to analyse, using a multiwavelength approach, the nuclear properties of an homogeneous sample of 42 faint BL Lacs, selected, for the first time in literature, with no constraint on their radio and gamma-ray flux densities/emission. We began asking and obtaining new VLBA observations at 8 and 15 GHz for the whole sample. We derived fundamental parameters as radio flux densities, spectral index information, and parsec scale structure. Moreover, we investigated their gamma-ray emission properties using the 2LAT Fermi results. Here, we report our preliminary results on the radio and gamma-ray properties of this sample of faint BL Lacs. In the next future, we will complete the multiwavelength analysis.
Seventeen southern sky BL Lacs were observed in UBVRI using the CCD Camera on the 1.0m telescope at the South African Astronomical Observatory (SAAO) in Aug and Nov 1999. The analyses of all the seventeen sources are now complete, and are available via anonymous ftp (ftp pukrs1.puk.ac.za/pub/Blazars). A few examples of our results are however given in this paper. Whereas PKS 2005-489 and PKS 2155-304 apear to have been in a high state, PKS 0048-097 and PKS 0521-365 showed evidence of variability on a time-scale of a few days, with the amplitude of variability increasing towards short wavelengths. This is consistent with observations of gamma-ray BL Lacs, which show similar behaviour in optical and X-rays.
We present BeppoSAX LECS, MECS, and PDS spectra of eleven X-ray selected BL Lacertae objects. Combining these sources with the ones presented elsewhere we have a sample of 21 BL Lacs from the Einstein Medium Sensitivity and Einstein Slew Survey. The sample shows strong correlations of several physical parameters with the peak frequency of the synchrotron branch of the spectral energy distribution. In particular the peak frequency is correlated to the X-ray spectral shape: objects with the peak near to the X-ray band show harder and straighter X-ray spectra than those of the low energy peaked sources. This work shows that the recently proposed unification scenario for different types of blazars can hold also within the class of high frequency peaked BL Lac objects.
We present the results of our study of spectral energy distributions (SEDs) of a sample of ten low- to intermediate-synchrotron-peaked blazars. We investigate some of the physical parameters most likely responsible for the observed short-term variations in blazars. To do so, we focus on the study of changes in the SEDs of blazars corresponding to changes in their respective optical fluxes. We model the observed spectra of blazars from radio to optical frequencies using a synchrotron model that entails a log-parabolic distribution of electron energies. A significant correlation among the two fitted spectral parameters ($a$, $b$) of log-parabolic curves and a negative trend among the peak frequency and spectral curvature parameter, $b$, emphasize that the SEDs of blazars are fitted well by log-parabolic curves. On considering each model parameter that could be responsible for changes in the observed SEDs of these blazars, we find that changes in the jet Doppler factors are most important.
The multi-frequency `Sedentary Survey is a deep, statistically complete, radio flux limited sample comprising 150 BL Lacertae objects distinguished by their extremely high X-ray to radio flux ratio, ranging from five hundred to over five thousand times that of typical BL Lacs discovered in radio surveys. This paper presents the final, 100% identified, catalog together with the optical, X-ray and broad-band SEDs constructed combining literature multi-frequency data with non-simultaneous optical observations and BeppoSAX X-ray data, when available. The SEDs confirm that the peak of the synchrotron power in these objects is located at very high energies. BeppoSAX wide band X-ray observations show that, in most cases, the X-ray spectra are convex and well described by a logarithmic parabola model peaking (in a E f(E) vs E representation) between 0.02 to several keV. Owing to the high synchrotron energies involved most of the sources in the catalog are likely to be TeV emitters, with the closest and brightest ones probably detectable by the present generation of Cherenkov telescopes. The optical spectrum of about one fourth of the sources is totally featureless. Because this implies that the non-thermal emission must be well above that of the host galaxy, these objects are likely to be the most powerful sources in the survey and therefore be examples of the yet unreported high radio luminosity-high energy peaked BL Lacs.