We present the luminosity function of 90um selected galaxies from the European Large Area ISO Survey (ELAIS), extending to z=0.3. Their luminosities are in the range 10^9 < h_65^-2 L/Lsun < 10^12, i.e. non-ultraluminous. From our sample of 37 reliably detected galaxies in the ELAIS S1 region from the Efstathiou et al. (2000) S_90 >= 100mJy database, we found optical, 15um or 1.4GHz identifications for 24 (65%). We have obtained 2dF and UK Schmidt FLAIR spectroscopy of 89% of IDs to rigid multivariate flux limits. We construct a luminosity function assuming (a) our spectroscopic subset is an unbiased sparse sample, and (b) there are no galaxies which would not be represented in our spectroscopic sample at {it any} redshift. We argue that we can be confident of both assumptions. We find the luminosity function is well-described by the local 100um luminosity function of Rowan-Robinson, Helou & Walker (1987). {it Assuming} this local normalisation, we derive luminosity evolution of (1+z)^{2.45pm0.85} (95% confidence). We argue that star formation dominates the bolometric luminosities of these galaxies and we derive comoving star formation rates in broad agreement with the Flores et al. (1999) and Rowan-Robinson et al. (1997) mid-IR-based estimates.