Do you want to publish a course? Click here

Power spectrum of the polarized diffuse Galactic radio emission

85   0   0.0 ( 0 )
 Added by Carlo Baccigalupi
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have analyzed the available polarization surveys of the Galactic emission to estimate to what extent it may be a serious hindrance to forthcoming experiments aimed at detecting the polarized component of Cosmic Microwave Background (CMB) anisotropies. Regions were identified for which independent data consistently indicate that depolarization must be small. The power spectrum of the polarized emission, in terms of antenna temperature, was found to be described by $C_{ell}simeq (1.2pm 0.8)cdot 10^{-9}cdot (ell / 450)^{-1.8pm 0.3}cdot ( u/ 2.4{rm GHz})^{-5.8}$ K$^{2}$, from arcminute to degree scales. Data on larger angular scales ($ellle 100$) indicate a steeper slope $sim ell^{-3}$. We conclude that polarized Galactic emission is unlikely to be a serious limitation to CMB polarization measurements at the highest frequencies of the MAP and {sc Planck}/LFI instruments, at least for $ellge 50$ and standard cosmological models. The weak correlation between polarization and total power and the low polarization degree of radio emission close to the Galactic plane, found also in low-depolarization regions, is interpreted as due to large contributions to the observed intensity from unpolarized sources, primarily strong HII regions, concentrated on the Galactic plane. Thus estimates of the power spectrum of total intensity at low Galactic latitudes are not representative of the spatial distribution of Galactic emission far from the plane. Both total power and polarized emissions show highly significant deviations from a Gaussian distribution.



rate research

Read More

137 - R. A. Stutz 2014
Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization dataset at 1.4 GHz covering an area of 1060 deg$^2$. The data analyzed are a combination of data from the 100-m Effelsberg Telescope, the 26-m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from $ell approx 60$ to $ell approx 10^4$ and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at $b= 9^{circ}$, associated with the disk-halo transition in a 15$^{circ}$ region around $l=108^{circ}$. Localized variations in the index are found toward HII regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by H$alpha$ emission) indicating that the thermal emission depolarizes background synchrotron emission.
277 - G. Giardino 2001
We have analysed the Rhodes/HartRAO survey at 2326 MHz and derived the global angular power spectrum of Galactic continuum emission. In order to measure the angular power spectrum of the diffuse component, point sources were removed from the map by median filtering. A least-square fit to the angular power spectrum of the entire survey with a power law spectrum C_l proportional to l^{-alpha}, gives alpha = 2.43 +/- 0.01 for l = 2-100. The angular power spectrum of radio emission appears to steepen at high Galactic latitudes and for observed regions with |b| > 20 deg, the fitted spectral index is alpha = 2.92 +/- 0.07. We have extrapolated this result to 30 GHz (the lowest frequency channel of Planck) and estimate that no significant contribution to the sky temperature fluctuation is likely to come from synchrotron at degree-angular scales
101 - Luke Jew 2019
We present an estimate of the polarized spectral index between the Planck 30 and 44 GHz surveys in $3.7^circ$ pixels across the entire sky. We use an objective reference prior that maximises the impact of the data on the posterior and multiply this by a maximum entropy prior that includes information from observations in total intensity by assuming a polarization fraction. Our parametrization of the problem allows the reference prior to be easily determined and also provides a natural method of including prior information. The spectral index map is consistent with those found by others between surveys at similar frequencies. Across the entire sky we find an average temperature spectral index of $-2.99pm0.03(pm1.12)$ where the first error term is the statistical uncertainty on the mean and the second error term (in parentheses) is the extra intrinsic scatter in the data. We use a clustering algorithm to identify pixels with actual detections of the spectral index. The average spectral index in these pixels is $-3.12pm0.03(pm0.64)$ and then when also excluding pixels within $10^circ$ of the Galactic plane we find $-2.92(pm0.03)$. We find a statistically significant difference between the average spectral indices in the North and South Fermi bubbles. Only including pixels identified by the clustering algorithm, the average spectral index in the southern bubble is $-3.00pm0.05(pm0.35)$, which is similar to the average across the whole sky. In the northern bubble we find a much harder average spectral index of $-2.36pm0.09(pm0.63)$. Therefore, if the bubbles are features in microwave polarization they are not symmetric about the Galactic plane.
The polarized thermal emission from Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100GHz. We exploit the Planck HFI polarization data from 100 to 353GHz to measure the dust angular power spectra $C_ell^{EE,BB}$ over the range $40<ell<600$ well away from the Galactic plane. These will bring new insights into interstellar dust physics and a precise determination of the level of contamination for CMB polarization experiments. We show that statistical properties of the emission can be characterized over large fractions of the sky using $C_ell$. For the dust, they are well described by power laws in $ell$ with exponents $alpha^{EE,BB}=-2.42pm0.02$. The amplitudes of the polarization $C_ell$ vary with the average brightness in a way similar to the intensity ones. The dust polarization frequency dependence is consistent with modified blackbody emission with $beta_d=1.59$ and $T_d=19.6$K. We find a systematic ratio between the amplitudes of the Galactic $B$- and $E$-modes of 0.5. We show that even in the faintest dust-emitting regions there are no clean windows where primordial CMB $B$-mode polarization could be measured without subtraction of dust emission. Finally, we investigate the level of dust polarization in the BICEP2 experiment field. Extrapolation of the Planck 353GHz data to 150GHz gives a dust power $ell(ell+1)C_ell^{BB}/(2pi)$ of $1.32times10^{-2}mu$K$_{CMB}^2$ over the $40<ell<120$ range; the statistical uncertainty is $pm0.29$ and there is an additional uncertainty (+0.28,-0.24) from the extrapolation, both in the same units. This is the same magnitude as reported by BICEP2 over this $ell$ range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky.
From an on-going survey of the Galactic bulge, we have discovered a number of compact, steep spectrum radio sources. In this present study we have carried out more detailed observations for two of these sources, located 43 arcmin and 12.7 deg from the Galactic Center. Both sources have a very steep spectrum (alpha ~ -3) and are compact, with upper limits on the angular size of 1-2 arcsec. Their flux densities appear to be relatively steady on timescales of years, months, and hours, with no indications of rapid variability or transient behavior. We detect significant circularly polarized emission from both sources, but only weak or upper limits on linear polarization. Neither source has a counterpart at other wavelengths and deep, high-frequency searches fail to find pulsations. We compare their source properties with other known compact, non-thermal source populations in the bulge (e.g. X-ray binaries, magnetars, the Burper, cataclysmic variables). Our existing data support the hypothesis that they are scatter broadened millisecond or recycled pulsars, either at the bulge or along the line of sight. We also consider the possibility that they may be a new population of Galactic radio sources which share similar properties as pulsars but lack pulsations; a hypothesis that can be tested by future large-scale synoptic surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا