Do you want to publish a course? Click here

Eros 2 proper motion survey for halo white dwarfs

64   0   0.0 ( 0 )
 Added by Bertrand Goldman
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since 1996 EROS 2 has surveyed 440 square degrees at high Galactic latitude in order to search for high proper motion stars in the Solar neighbourhood. We present here the analysis of 250 square degrees for which we have three years of data. No object with halo-like kinematics has been detected. Using a detailed Monte-Carlo simulation of the observations, we calculate our detection efficiency for this kind of object and place constraints on their contribution to various halo models. If 14 Gyr old, the halo cannot be made of more than 18% of hydrogen white dwarfs (95% C.L.).



rate research

Read More

112 - B.Goldman , C.Afonso , Ch.Alard 2002
We are conducting a 377-square-degree proper motion survey in the ~V and I bands in order to determine the cool white dwarf contribution to the Galactic dark matter. Using the 250 square degrees for which we possess three epochs, and applying selection criteria designed to isolate halo-type objects, we find no candidates in a 5500 pc^3 effective volume for old, fast M_V=17 white dwarfs. We check the detection efficiency by cross-matching our catalogue with Luytens NLTT catalogue. The halo white dwarf contribution cannot exceed 5% (95% C.L.) for objects with M_V=17 and 1<V-I<1.5. The same conclusion applies to a 14Gyr halo composed of white dwarfs with hydrogen atmosphere, as modeled by Chabrier (99).
346 - N.R. Deacon 2008
The UKIRT Infrared Deep Sky Survey (UKIDSS) is the first of a new generation of infrared surveys. Here we combine the data from two UKIDSS components, the Large Area Survey (LAS) and the Galactic Cluster Survey (GCS), with 2MASS data to produce an infrared proper motion survey for low mass stars and brown dwarfs. In total we detect 267 low mass stars and brown dwarfs with significant proper motions. We recover all ten known single L dwarfs and the one known T dwarf above the 2MASS detection limit in our LAS survey area and identify eight additional new candidate L dwarfs. We also find one new candidate L dwarf in our GCS sample. Our sample also contains objects from eleven potential common proper motion binaries. Finally we test our proper motions and find that while the LAS objects have proper motions consistent with absolute proper motions, the GCS stars may have proper motions which are significantly under-estimated. This is due possibly to the bulk motion of some of the local astrometric reference stars used in the proper motion determination.
We conducted a spectropolarimetic survey of 58 high proper-motion white dwarfs which achieved uncertainties of >2 kG in the Halpha line and >5 kG in the upper Balmer line series. The survey aimed at detecting low magnetic fields (< 100 kG) and helped identify the new magnetic white dwarfs NLTT 2219, with a longitudinal field B_l = -97 kG, and NLTT 10480 (B_l=-212 kG). Also, we report the possible identification of a very low-field white dwarf with B_l = -4.6 kG. The observations show that ~5% of white dwarfs harbour low fields (~10 to ~10^2 kG) and that increased survey sensitivity may help uncover several new magnetic white dwarfs with fields below ~1 kG. A series of observations of the high field white dwarf NLTT 12758 revealed changes in polarity occurring within an hour possibly associated to an inclined, fast rotating dipole. Also, the relative strength of the pi and sigma components in NLTT 12758 possibly revealed the effect of a field concentration (spot), or, most likely, the presence of a non-magnetic white dwarf companion. Similar observations of NLTT 13015 also showed possible polarity variations, but without a clear indication of the timescale. The survey data also proved useful in constraining the chemical composition, age and kinematics of a sample of cool white dwarfs as well as in constraining the incidence of double degenerates.
The white dwarf luminosity function has proven to be an excellent tool to study some properties of the galactic disk such as its age and the past history of the local star formation rate. The existence of an observational luminosity function for halo white dwarfs could provide valuable information about its age, the time that the star formation rate lasted, and could also constrain the shape of the allowed Initial Mass Functions (IMF). However, the main problem is the scarce number of white dwarfs already identified as halo stars. In this Letter we show how an artificial intelligence algorithm can be succesfully used to classify the population of spectroscopically identified white dwarfs allowing us to identify several potential halo white dwarfs and to improve the significance of its luminosity function.
A common proper motion survey of M dwarf stars within 8 pc of the Sun reveals no new stellar or brown dwarf companions at wide separations (~100-1400 AU). This survey tests whether the brown dwarf ``desert extends to large separations around M dwarf stars and further explores the census of the solar neighborhood. The sample includes 66 stars north of -30 degrees and within 8 pc of the Sun. Existing first epoch images are compared to new J-band images of the same fields an average of 7 years later to reveal proper motion companions within a ~4 arcminute radius of the primary star. No new companions are detected to a J-band limiting magnitude of ~16.5, corresponding to a companion mass of ~40 Jupiter masses for an assumed age of 5 Gyr at the mean distance of the objects in the survey, 5.8 pc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا