Do you want to publish a course? Click here

Interstellar X-ray Absorption Spectroscopy of Oxygen, Neon, and Iron with the Chandra LETGS Spectrum of X0614+091

52   0   0.0 ( 0 )
 Added by Frits Paerels
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We find resolved interstellar O K, Ne K, and Fe L absorption spectra in the Chandra Low Energy Transmission Grating Spectrometer spectrum of the low mass X-ray binary X0614+091. We measure the column densities in O and Ne, and find direct spectroscopic constraints on the chemical state of the interstellar O. These measurements probably probe a low-density line of sight through the Galaxy and we discuss the results in the context of our knowledge of the properties of interstellar matter in regions between the spiral arms.



rate research

Read More

151 - Adrienne M. Juett 2006
We present high-resolution spectroscopy of the neon K-shell and iron L-shell interstellar absorption edges in nine X-ray binaries using the High Energy Transmission Grating Spectrometer (HETGS) onboard the Chandra X-ray Observatory. We found that the iron absorption is well fit by an experimental determination of the cross-section for metallic iron, although with a slight wavelength shift of ~20 mA. The neon edge region is best fit by a model that includes the neutral neon edge and three Gaussian absorption lines. We identify these lines as due to the 1s-2p transitions from Ne II, Ne III, and Ne IX. As we found in our oxygen edge study, the theoretical predictions for neutral and low-ionization lines all require shifts of ~20 mA to match our data. Combined with our earlier oxygen edge study, we find that a best fit O/Ne ratio of 5.4+/-1.6, consistent with standard interstellar abundances. Our best fit Fe/Ne ratio of 0.20+/-0.03 is significantly lower than the interstellar value. We attribute this difference to iron depletion into dust grains in the interstellar medium. We make the first measurement of the neon ionization fraction in the ISM. We find Ne II/Ne I ~ 0.3 and Ne III/Ne I ~ 0.07. These values are larger than is expected given the measured ionization of interstellar helium. For Ne IX, our results confirm the detection of the hot ionized interstellar medium of the Galaxy.
We present high-resolution soft-X-ray spectra of the prototypical Seyfert 2 galaxy, NGC 1068, taken with XMM-Newton RGS and Chandra LETGS. Its rich emission-line spectrum is dominated by recombination in a warm plasma (bright, narrow radiative recombination continua provide the ``smoking gun), which is photoionized by the inferred nuclear power-law continuum. Radiative decay following photoexcitation of resonant transitions is also significant. A self-consistent model of an irradiated cone of gas is capable of reproducing the hydrogenic/heliumlike ionic line series in detail. The radial ionic column densities we infer are consistent with absorption measurements (the warm absorber) in Seyfert 1 galaxies. This strongly suggests that the emission spectrum we observe from NGC 1068 emanates from its warm absorber. The observed extent of the ionization-cone/warm absorber in NGC 1068 of about 300 pc implies that a large fraction of the gas associated with generic warm absorbers may typically exist on the hundreds-of-parsec scale rather than much closer to the nucleus (e.g., less than a parsec). Spatially-resolved spectroscopy using the LETGS of two distinct emission regions yields two noticeably different spectra. We show that these differences are solely due to differing radial column densities. A fairly flat distribution in ionization parameter is necessary to explain the inferred radial ionic column densities of all spectra. This must primarily be due to a broad density distribution at each radius, spanning roughly 0.1-100 cm$^{-3}$. (Abridged)
(Abbrev.) We present high-resolution spectroscopy of the oxygen K-shell interstellar absorption edge in 7 X-ray binaries using the HETGS onboard Chandra. Using the brightest sources as templates, we found a best-fit model of 2 absorption edges and 5 Gaussian absorption lines. All of these features can be explained by the recent predictions of K-shell absorption from neutral and ionized atomic oxygen. We identify the K alpha and K beta absorption lines from neutral oxygen, as well as the S=3/2 absorption edge. The expected S=1/2 edge is not detected in these data due to overlap with instrumental features. We also identify the K alpha absorption lines from singly and doubly ionized oxygen. The OI K alpha absorption line is used as a benchmark with which to adjust the absolute wavelength scale for theoretical predictions of the absorption cross-sections. We find that shifts of 30-50 mA are required, consistent with differences previously noticed from comparisons of the theory with laboratory measurements. Significant oxygen features from dust or molecular components, as suggested in previous studies, are not required by our HETGS spectra. With these spectra, we can begin to measure the large-scale properties of the ISM. We place a limit on the velocity dispersion of the neutral lines of <200 km s^{-1}, consistent with measurements at other wavelengths. We also make the first measurement of the oxygen ionization fractions in the ISM. We constrain the interstellar ratio of OII/OI to ~0.1 and the ratio of OIII/OI to <0.1.
Iron-sulfur complexes play an important role in biological processes such as metabolic electron transport. A detailed understanding of the mechanism of long range electron transfer requires knowledge of the electronic structure of the complexes, which has traditionally been challenging to obtain, either by theory or by experiment, but the situation has begun to change with advances in quantum chemical methods and intense free electron laser light sources. We compute the signals from stimulated X-ray Raman spectroscopy (SXRS) and absorption spectroscopy of homovalent and mixed-valence [2Fe-2S] complexes, using the {it ab initio} density matrix renormalization group (DMRG) algorithm. The simulated spectra show clear signatures of the theoretically predicted dense low-lying excited states within the d-d manifold. Furthermore, the difference in signal intensity between the absorption-active and Raman-active states provides a potential mechanism to selectively excite states by a proper tuning of the excitation pump, to access the electronic dynamics within this manifold.
100 - S. Migliari 2009
We observed the neutron star (NS) ultra-compact X-ray binary 4U0614+091 quasi-simultaneously in the radio band (VLA), mid-IR/IR (Spitzer/MIPS and IRAC), near-IR/optical (SMARTS), optical-UV (Swift/UVOT), soft and hard X-rays (Swift/XRT and RXTE). The source was steadily in its `hard state. We detected the source in the whole range, for the first time in the radio band at 4.86 and 8.46 GHz and in the mid-IR at 24 um, up to 100 keV. The optically thick synchrotron spectrum of the jet is consistent with being flat from the radio to the mid-IR band. The flat jet spectrum breaks in the range (1-4)x10^(13) Hz to an optically-thin power-law synchrotron spectrum with spectral index ~-0.5. These observations allow us to estimate a lower limit on the jet radiative power of ~3x10^(32) erg/s and a total jet power Lj~10^(34) u_(0.05)^(-1) Ec^(0.53) erg/s (where Ec is the high-energy cutoff of the synchrotron spectrum in eV and u_(0.05) is the radiative efficiency in units of 0.05). The contemporaneous detection of the optically thin part of the compact jet and the X-ray tail above 30 keV allows us to assess the contribution of the jet to the hard X-ray tail by synchrotron self-Compton (SSC) processes. We conclude that, for realistic jet size, boosting, viewing angle and energy partition, the SSC emission alone, from the post-shock, accelerated, non-thermal population in the jet, is not a viable mechanism to explain the observed hard X-ray tail of the neutron star 4U0614+091.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا