Do you want to publish a course? Click here

Cosmic concordance and the fine structure constant

67   0   0.0 ( 0 )
 Added by Richard Battye
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent measurements of a peak in the angular power spectrum of the cosmic microwave background appear to suggest that geometry of the universe is close to being flat. But if other accepted indicators of cosmological parameters are also correct then the best fit model is marginally closed, with the peak in the spectrum at larger scales than in a flat universe. Such observations can be reconciled with a flat universe if the fine structure constant had a lower value at earlier times, which would delay the recombination of electrons and protons and also act to suppress secondary oscillations as observed. We discuss evidence for a few percent increase in the fine structure constant between the time of recombination and the present.



rate research

Read More

201 - C. L. Bennett 2014
The determination of the Hubble constant has been a central goal in observational astrophysics for nearly 100 years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. A precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates, or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations, and we combine them to determine a best-fit Hubble constant of 69.6+/-0.7 km/s/Mpc. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H_0/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.
65 - R. W. Kuhne 1999
Webb et al. presented preliminary evidence for a time-varying fine-structure constant. We show Tellers formula for this variation to be ruled out within the Einstein-de Sitter universe, however, it is compatible with cosmologies which require a large cosmological constant.
221 - Silvia Galli 2012
We propose a new method to probe for variations in the fine structure constant alpha using clusters of galaxies, opening up a window on a new redshift range for such constraints. Hot clusters shine in the X-ray mainly due to bremsstrahlung, while they leave an imprint on the CMB frequency spectrum through the Sunyaev-Zeldovich effect. These two physical processes can be characterized by the integrated Comptonization parameter Y_SZ DA^2 and its X-ray counterpart, the Y_X parameter. The ratio of these two quantities is expected to be constant from numerical simulations and current observations. We show that this fact can be exploited to constrain alpha, as the ratio of the two parameters depends on the fine structure constant as alpha^{3.5}. We determine current constraints from a combination of Planck SZ and XMM-Newton data, testing different models of variation of alpha. When fitting for a constant value of alpha, we find that current constraints are at the 1% level, comparable with current CMB constraints. We discuss strategies for further improving these constraints by almost an order of magnitude.
We examine the recently derived quantum-mechanical relation between atomic polarizabilities and equilibrium internuclear distances in van der Waals (vdW) bonded diatomic systems [Phys. Rev. Lett. {bf 121}, 183401 (2018)]. For homonuclear dimers, this relation is described by the compact formula $alpha_{rm m}^{rm q} = Phi R_{rm vdW}^7$, where the constant factor in front of the vdW radius was determined empirically. Here, we derive $Phi = (4piepsilon_0/a_0^4) times alpha^{4/3}$ expressed in terms of the vacuum electric permittivity $epsilon_0$, the Bohr radius $a_0$, and the fine-structure constant $alpha$. The validity of the obtained formula is confirmed by estimating the value of the fine-structure constant from non-relativistic quantum-mechanical calculations of atomic polarizabilities and equilibrium internuclear vdW distances. The presented derivation allows to interpret the fine-structure constant as the ratio between the polarizability densities of vacuum and matter, whereas the vdW radius becomes a geometrical length scale of atoms endowed by the vacuum field.
60 - D.F. Mota 2004
This thesis describes a detailed investigation of the effects of matter inhomogeneities on the cosmological evolution of the fine structure constant using the Bekenstein-Sandvik-Barrow-Magueijo (BSBM) theory. We briefly review the observational and theoretical motivations to this work, together with the standard cosmological model. We start by analysing the phase space of the system of equations that describes a time-varying fine structure constant, in a homogeneous and isotropic background universe. We classify all the possible behaviours of the fine structure constant in ever-expanding universes and find exact solutions for it. Using a gauge-invariant formalism, we derive and solve the linearly perturbed Einstein cosmological equations for the BSBM theory. We calculate the time evolution of inhomogeneous perturbations of the fine structure constant on small and large scales with respect to the Hubble radius. We also investigate, in the non-linear regime of the large scale structure formation, the space-time evolution of the fine structure constant, inside evolving spherical overdensities. The dependence on the dark-energy equation of state is also analysed. Finally, we analyse the effects of the coupling of the field (that drives the variations in the fine structure constant) to the matter fields, on the space and time evolution of the fine structure constant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا