Do you want to publish a course? Click here

Charge conservation and time-varying speed of light

60   0   0.0 ( 0 )
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been recently claimed that cosmologies with time dependent speed of light might solve some of the problems of the standard cosmological scenario, as well as inflationary scenarios. In this letter we show that most of these models, when analyzed in a consistent way, lead to large violations of charge conservation. Thus, they are severly constrained by experiment, including those where $c$ is a power of the scale factor and those whose source term is the trace of the energy-momentum tensor. In addition, early Universe scenarios with a sudden change of $c$ related to baryogenesis are discarded.



rate research

Read More

We derive a luminosity distance formula for the varying speed of light (VSL) theory which involves higher order characteristics of expansion such as jerk, snap and lerk which can test the impact of varying $c$ onto the evolution of the universe. We show that the effect of varying $c$ is possible to be isolated due to the relations connecting observational parameters already by measuring the second-order term in redshift $z$ unless there is a redundancy between the curvature and an exotic fluid of cosmic strings scaling the same way as the curvature.
197 - Robert C. Fletcher 2009
This paper presents a compelling argument for the physical light speed in the Friedman-Lemaitre-Robertson-Walker (FLRW) universe to vary with the cosmic time coordinate t of FLRW. It must be variable when the radial comoving differential coordinates of FLRW is interpreted as physical and therefore transformable by a Lorentz transform locally to differentials of stationary physical coordinates. Because the FLRW differential radial distance has a time varying coefficient a(t), integration of the transformed differentials to obtain stationary coordinates for a short radial distance requires the light speed c(t) to be proportional to the square root of da/dt. Since we assume homogeneity of space, this derived c(t) is the physical light speed on all points of the FLRW universe. This impacts the interpretation of all astronomical observations of distant phenomena that are sensitive to light speed. A world transform from FLRW that has a Minkowski metric close to the origin is shown to have a physical radius out to all points of the visible universe. In order to obtain numerical values for c(t), the general relativity (GR) field equation is extended by using a variable gravitational constant and rest mass that keeps constant the gravitational and particle rest energies. This also keeps constant the proportionality constant between the GR tensors of the field equation and conserves the rest stress-energy tensor of the ideal fluid used in the FLRW GR field equation. In the same way all of special and general relativity is extended to include a variable light speed.
Variation of the speed of light is quite a debated issue in cosmology with some benefits, but also with some controversial concerns. Many approaches to develop a consistent varying speed of light (VSL) theory have been developed recently. Although a lot of theoretical debate has sprout out about their feasibility and reliability, the most obvious and straightforward way to discriminate and check if such theories are really workable has been missed out or not fully employed. What is meant here is the comparison of these theories with observational data in a fully comprehensive way. In this paper we try to address this point i.e., by using the most updated cosmological probes, we test three different candidates for a VSL theory (Barrow & Magueijo, Avelino & Martins, and Moffat) signal. We consider many different ans{a}tze for both the functional form of $c(z)$ (which cannot be fixed by theoretical motivations) and for the dark energy dynamics, in order to have a clear global picture from which we extract the results. We compare these results using a reliable statistical tool such as the Bayesian Evidence. We find that the present cosmological data is perfectly compatible with any of these VSL scenarios, but in one case (Moffat model) we have a higher Bayesian Evidence ratio in favour of VSL than in the standard $c=$ constant $Lambda$CDM scenario. Moreover, in such a scenario, the VSL signal can help to strengthen constraints on the spatial curvature (with indication toward an open universe), to clarify some properties of dark energy (exclusion of a cosmological constant at $2sigma$ level) and is also falsifiable in the nearest future due to some peculiar issues which differentiate this model from the standard model. Finally, we have applied some priors which come from cosmology and, in particular, from information theory and gravitational thermodynamics.
In this paper we extend a new method to measure possible variation of the speed of light by using Baryon Acoustic Oscillations and the Hubble function presented in our earlier paper [V. Salzano, M. P. Dc{a}browski, and R. Lazkoz, Phys. Rev. D93, 063521 (2016)] onto an inhomogeneous model of the universe. The method relies on the fact that there is a simple relation between the angular diameter distance $(D_{A})$ maximum and the Hubble function $(H)$ evaluated at the same maximum-condition redshift, which includes speed of light $c$. One limit of such method was the assumption of null spatial curvature (even if we showed that even a non-zero curvature would have negligible effects). Here, we move one step further: we explicitly assume a model with intrinsic non-null curvature, and calculate the exact relation between $D_{A}$ and $H$ in this case. Then, we evaluate if current or future missions such as SKA can be sensitive enough to detect any such kind of spatial variation of $c$ which can perhaps be related to the recently observed spatial variation of the fine structure constant (an effect known as $alpha$-dipole).
The varying speed of light (VSL) theory is controversial. It succeeds in explaining some cosmological problems, but on the other hand it is excluded by mainstream physics because it will shake the foundation of physics. In the present paper, we devote ourselves to test whether the speed of light is varying from the observational data of the type Ia Supernova, Baryon Acoustic Oscillation, Observational $H(z)$ data and Cosmic Microwave Background (CMB). We select the common form $c(t)=c_0a^n(t)$ with the contribution of dark energy and matter, where $c_0$ is the current value of speed of light, $n$ is a constant, and consequently construct a varying speed of light dark energy model (VSLDE). The combined observational data show a much trivial constraint $n=-0.0033 pm 0.0045$ at 68.3% confidence level, which indicates that the speed of light may be a constant with high significance. By reconstructing the time-variable $c(t)$, we find that the speed of light almost has no variation for redshift $z < 10^{-1}$. For high-$z$ observations, they are more sensitive to the VSLDE model, but the variation of speed of light is only in order of $10^{-2}$. We also introduce the geometrical diagnostic $Om (z)$ to show the difference between the VSLDE and $Lambda$CDM model. The result shows that the current data are difficult to differentiate them. All the results show that the observational data favor the constant speed of light.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا