No Arabic abstract
We present first-season infrared (IR) and optical photometry and spectroscopy of the Type Ia Supernova 1998bu in M96. We also report optical polarimetry of this event. SN1998bu is one of the closest type Ia Supernovae of modern times and the distance of its host galaxy is well-determined. We find that SN1998bu is both photometrically and spectroscopically normal. However, the extinction to this event is unusually high, with Av=1.0 +/-0.11. We find that SN1998bu peaked at an intrinsic Mv=-19.37 +/-0.23. Adopting a distance modulus of 30.25 (Tanvir et al. 1999) and using Phillips et al.s (1999) relations for the Hubble constant we obtain Ho=70.4 +/-4.3 km/s/Mpc. Combination of our IR photometry with those of Jha et al. (1999) provides one of the most complete early-phase IR light curves for a SN Ia published so far. In particular, SN 1998bu is the first normal SN Ia for which good pre-maximum (in the B band) IR coverage has been obtained. It reveals that the J, H and K light curves peak about 5 days earlier than the flux in the B-band curve.
We present optical and near-infrared photometry and spectroscopy of the type Ia SN 1998bu in the Leo I Group galaxy M96 (NGC 3368). The data set consists of 356 photometric measurements and 29 spectra of SN 1998bu between UT 1998 May 11 and July 15. The well-sampled light curve indicates the supernova reached maximum light in B on UT 1998 May 19.3 (JD 2450952.8 +/- 0.8) with B = 12.22 +/- 0.03 and V = 11.88 +/- 0.02. Application of a revised version of the Multicolor Light Curve Shape (MLCS) method yields an extinction toward the supernova of A_V = 0.94 +/- 0.15 mag, and indicates the supernova was of average luminosity compared to other normal type Ia supernovae. Using the HST Cepheid distance modulus to M96 (Tanvir et al. 1995) and the MLCS fit parameters for the supernova, we derive an extinction-corrected absolute magnitude for SN 1998bu at maximum, M_V = -19.42 +/- 0.22. Our independent results for this supernova are consistent with those of Suntzeff et al. (1999). Combining SN 1998bu with three other well-observed local calibrators and 42 supernovae in the Hubble flow yields a Hubble constant, H_0 = 64^{+8}_{-6} km/s/Mpc, where the error estimate incorporates possible sources of systematic uncertainty including the calibration of the Cepheid period-luminosity relation, the metallicity dependence of the Cepheid distance scale, and the distance to the LMC.
We present optical and infrared photometry of the unusual Type Ia supernova 2000cx. With the data of Li et al. (2001) and Jha (2002), this comprises the largest dataset ever assembled for a Type Ia SN, more than 600 points in UBVRIJHK. We confirm the finding of Li et al. regarding the unusually blue B-V colors as SN 2000cx entered the nebular phase. Its I-band secondary hump was extremely weak given its B-band decline rate. The V minus near infrared colors likewise do not match loci based on other slowly declining Type Ia SNe, though V-K is the least ``abnormal. In several ways SN 2000cx resembles other slow decliners, given its B-band decline rate (Delta m_15(B) = 0.93), the appearance of Fe III lines and weakness of Si II in its pre-maximum spectrum, the V-K colors and post-maximum V-H colors. If the distance modulus derived from Surface Brightness Fluctuations of the host galaxy is correct, we find that the rate of light increase prior to maximum, the characteristics of the bolometric light curve, and the implied absolute magnitude at maximum are all consistent with a sub-luminous object with Delta m_15(B) ~ 1.6-1.7 having a higher than normal kinetic energy.
Supernova (SN) 2009ig was discovered 17 hours after explosion by the Lick Observatory Supernova Search, promptly classified as a normal Type Ia SN (SN Ia), peaked at V = 13.5 mag, and was equatorial, making it one of the foremost supernovae for intensive study in the last decade. Here, we present ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness. Our data include excellent UV and optical light curves, 25 premaximum optical spectra, and 8 UV spectra, including the earliest UV spectrum ever obtained of a SN Ia. SN 2009ig is a relatively normal SN Ia, but does display high-velocity ejecta - the ejecta velocity measured in our earliest spectra (v ~ -23,000 km/s for Si II 6355) is the highest yet measured in a SN Ia. The spectral evolution is very dramatic at times earlier than 12 days before maximum brightness, but slows after that time. The early-time data provide a precise measurement of 17.13 +/- 0.07 days for the SN rise time. The optical color curves and early-time spectra are significantly different from template light curves and spectra used for light-curve fitting and K-corrections, indicating that the template light curves and spectra do not properly represent all Type Ia supernovae at very early times. In the age of wide-angle sky surveys, SNe like SN 2009ig that are nearby, bright, well positioned, and promptly discovered will still be rare. As shown with SN 2009ig, detailed studies of single events can provide significantly more information for testing systematic uncertainties related to SN Ia distance estimates and constraining progenitor and explosion models than large samples of more distant SNe.
Supernova (SN) 2017cbv in NGC 5643 is one of a handful of type Ia supernovae (SNe~Ia) reported to have excess blue emission at early times. This paper presents extensive $BVRIYJHK_s$-band light curves of SN 2017cbv, covering the phase from $-16$ to $+125$ days relative to $B$-band maximum light. SN 2017cbv reached a $B$-band maximum of 11.710$pm$0.006~mag, with a post-maximum magnitude decline $Delta m_{15}(B)$=0.990$pm$0.013 mag. The supernova suffered no host reddening based on Phillips intrinsic color, Lira-Phillips relation, and the CMAGIC diagram. By employing the CMAGIC distance modulus $mu=30.58pm0.05$~mag and assuming $H_0$=72~$rm km s^{-1} Mpc^{-1}$, we found that 0.73~msun $^{56}$Ni was synthesized during the explosion of SN 2017cbv, which is consistent with estimates using reddening-free and distance-free methods via the phases of the secondary maximum of the NIR-band light curves. We also present 14 near-infrared spectra from $-18$ to $+49$~days relative to the $B$-band maximum light, providing constraints on the amount of swept-up hydrogen from the companion star in the context of the single degenerate progenitor scenario. No $Pa{beta}$ emission feature was detected from our post-maximum NIR spectra, placing a hydrogen mass upper limit of 0.1 $M_{odot}$. The overall optical/NIR photometric and NIR spectral evolution of SN 2017cbv is similar to that of a normal SN~Ia, even though its early evolution is marked by a flux excess no seen in most other well-observed normal SNe~Ia. We also compare the exquisite light curves of SN 2017cbv with some $M_{ch}$ DDT models and sub-$M_{ch}$ double detonation models.
We present 39 nights of optical photometry, 34 nights of infrared photometry, and 4 nights of optical spectroscopy of the Type Ia SN 1999ac. This supernova was discovered two weeks before maximum light, and observations were begun shortly thereafter. At early times its spectra resembled the unusual SN 1999aa and were characterized by very high velocities in the Ca II H and K lines, but very low velocities in the Si II 6355 A line. The optical photometry showed a slow rise to peak brightness but, quite peculiarly, was followed by a more rapid decline from maximum. Thus, the B- and V-band light curves cannot be characterized by a single stretch factor. We argue that the best measure of the nature of this object is not the decline rate parameter Delta m_15 (B). The B-V colors were unusual from 30 to 90 days after maximum light in that they evolved to bluer values at a much slower rate than normal Type Ia supernovae. The spectra and bolometric light curve indicate that this event was similar to the spectroscopically peculiar slow decliner SN 1999aa.