No Arabic abstract
We present the EROS nearby supernova ($z sim 0.02 - 0.2$) search and the analysis of the first year of data (1997). A total of 80 square degrees were surveyed. Eight supernov{ae} were detected, four of which were spectroscopically identified as type Ia supernov{ae}. The search efficiency was determined with a Monte-Carlo simulation taking into account the efficiencies for both supernova detection and host galaxy identification. Assuming that for a given galaxy the supernova rate is proportional to the galactic luminosity, we compute a type Ia supernova explosion rate of: ${cal R} = 0.44 {}_{-0.21}^{+0.35} {}_{-0.07}^{+0.13} h^2: / 10^{10} lbsun / 100 {rm yrs}$ at an average redshift of $sim 0.1$ where the errors are respectively statistical and systematic (type misidentification included).
We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift ~ 0.13. The result is $0.125^{+0.044+0.028}_{-0.034-0.028} h_{70}^2$ SNu where 1 SNu = 1 SN / $10^{10} L_{sun}^B$ / century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.
We present the first measurement of the rate of Type Ia supernovae at high redshift. The result is derived using a large subset of data from the Supernova Cosmology Project as described in more detail at this meeting by Perlmutter et al. (1996). We present our methods for estimating the numbers of galaxies and the number of solar luminosities to which the survey is sensitive, the supernova detection efficiency and hence the control time. We derive a rest-frame Type Ia supernova rate at z~0.4 of 0.82^+0.54_-0.37 ^+0.42_-0.32 h^2 SNu where the first uncertainty is statistical and the second includes systematic effects.
We present a measurement of the distant Type Ia supernova rate derived from the first two years of the Canada -- France -- Hawaii Telescope Supernova Legacy Survey. We observed four one-square degree fields with a typical temporal frequency of <Delta t> ~ 4 observer-frame days over time spans of from 158 to 211 days per season for each field, with breaks during full moon. We used 8-10 meter-class telescopes for spectroscopic followup to confirm our candidates and determine their redshifts. Our starting sample consists of 73 spectroscopically verified Type Ia supernovae in the redshift range 0.2 < z < 0.6. We derive a volumetric SN Ia rate of r_V(<z>=0.47) = 0.42^{+0.13}_{-0.09} (systematic) +- 0.06 (statistical) X 10^-4 yr^-1 Mpc^3, assuming h = 0.7, Omega_m = 0.3 and a flat cosmology. Using recently published galaxy luminosity functions derived in our redshift range, we derive a SN Ia rate per unit luminosity of r_L(<z>=0.47) = 0.154^{+0.048}_{-0.033} (systematic) ^{+0.039}_{-0.031} (statistical) SNu. Using our rate alone, we place an upper limit on the component of SN Ia production that tracks the cosmic star formation history of 1 SN Ia per 10^3 M_sun of stars formed. Our rate and other rates from surveys using spectroscopic sample confirmation display only a modest evolution out to z=0.55.
We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially-flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean redshift $zsimeq0.55$ of $1.53 {^{+0.28}_{-0.25}} {^{+0.32}_{-0.31}} 10^{-4} h^3 {rm Mpc}^{-3} {rm yr}^{-1}$ or $0.58 {^{+0.10}_{-0.09}} {^{+0.10}_{-0.09}} h^2 {rm SNu}$ (1 SNu = 1 supernova per century per $10^{10}$Lbsun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.
It is thought that type Ia supernovae (SNe Ia) are explosions of carbon-oxygen white dwarfs (CO WDs). Two main evolutionary channels are proposed for the WD to reach the critical density required for a thermonuclear explosion: the single degenerate scenario (SD), in which a CO WD accretes from a non-degenerate companion, and the double degenerate scenario (DD), in which two CO WDs merge. However, it remains difficult to reproduce the observed SN Ia rate with these two scenarios. With a binary population synthesis code we study the main evolutionary channels that lead to SNe Ia and we calculate the SN Ia rates and the associated delay time distributions. We find that the DD channel is the dominant formation channel for the longest delay times. The SD channel with helium-rich donors is the dominant channel at the shortest delay times. Our standard model rate is a factor five lower than the observed rate in galaxy clusters. We investigate the influence of ill-constrained aspects of single- and binary-star evolution and uncertain initial binary distributions on the rate of type Ia SNe. These distributions, as well as uncertainties in both helium star evolution and common envelope evolution, have the greatest influence on our calculated rates. Inefficient common envelope evolution increases the relative number of SD explosions such that for $alpha_{rm ce} = 0.2$ they dominate the SN Ia rate. Our highest rate is a factor three less than the galaxy-cluster SN Ia rate, but compatible with the rate determined in a field-galaxy dominated sample. If we assume unlimited accretion onto WDs, to maximize the number of SD explosions, our rate is compatible with the observed galaxy-cluster rate.