The high flux proton component observed by AMS below the geomagnetic cutoff can be well accounted for by assuming these particles to be secondaries originating from the interaction of Cosmic Ray protons with the atmosphere. Simulation results are reported
We further study the relations between parameters of bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 25 years, on the one hand, and solar proton events, on the other hand (Grechnev et al. in Publ. Astron. Soc. Japan 65, S4, 2013a). Here we address the relations between the microwave fluences at 35 GHz and near-Earth proton fluences above 100 MeV in order to find information on their sources and evaluate their diagnostic potential. A correlation was found to be pronouncedly higher between the microwave and proton fluences than between their peak fluxes. This fact probably reflects a dependence of the total number of protons on the duration of the acceleration process. In events with strong flares, the correlation coefficients of high-energy proton fluences with microwave and soft X-ray fluences are higher than those with the speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to high-energy proton fluxes. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution is probable and possibly prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux, duration, and fluence of the 35 GHz burst, while the role of the Big Flare Syndrome might be overestimated previously. Empirical diagnostic relations are proposed.
The PAMELA experiment is devoted to the study of cosmic rays in Low Earth Orbit with an apparatus optimized to perform a precise determination of the galactic antimatter component of c.r. It is constituted by a number of detectors built around a permanent magnet spectrometer. PAMELA was launched in space on June 15th 2006 on board the Russian Resurs-DK1 satellite for a mission duration of three years. The characteristics of the detectors, the long lifetime and the orbit of the satellite, will allow to address several aspects of cosmic-ray physics. In this work we discuss the observational capabilities of PAMELA to detect the electron component above 50 MeV. The magnetic spectrometer allows a detailed measurement of the energy spectrum of electrons of galactic and Jovian origin. Long term measurements and correlations with Earth-Jupiter 13 months synodic period will allow to separate these two contributions and to measure the primary electron Jovian component, dominant in the 50-70 MeV energy range. With this technique it will also be possible to study the contribution to the electron spectrum of Jovian e- reaccelerated up to 2 GeV at the Solar Wind Termination Shock.
The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential (thermal) and the power (hard) ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect, and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introduced by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the $t$-channel exchange is color-singlet and there is no fragmenting string -- so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive $pp$ collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.
Data from the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment were used to measure the geomagnetic cutoff for high-energy (>80 MeV) protons during the 14 December 2006 geomagnetic storm. The variations of the cutoff latitude as a function of rigidity were studied on relatively short timescales, corresponding to spacecraft orbital periods (94 min). Estimated cutoff values were compared with those obtained by means of a trajectory tracing approach based on a dynamical empirical modeling of the Earths magnetosphere. We found significant variations in the cutoff latitude, with a maximum suppression of about 7 deg at lowest rigidities during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were related to the changes in the magnetospheric configuration, investigating the role of interplanetary magnetic field, solar wind and geomagnetic parameters. PAMELAs results represent the first direct measurement of geomagnetic cutoffs for protons with kinetic energies in the sub-GeV and GeV region.
The cosmic ray spectrum has been shown to extend well beyond 10^20 eV. With nearly 20 events observed in the last 40 years, it is now established that particles are accelerated or produced in the universe with energy near 10^21 eV. In all production models neutrinos and photons are part of the cosmic ray flux. In acceleration models (bottom-up models), they are produced as secondaries of the possible interactions of the accelerated charged particle, in direct production models (top-down models) they are a dominant fraction of the decay chain. In addition, hadrons above the GZK threshold energy will also produce, along their path in the Universe, neutrinos and photons as secondaries of the pion photo-production processes. Therefore, photons and in particular neutrinos, are very distinctive signatures of the nature and distribution of the potential sources of ultra high energy cosmic rays. In the following we expose the identification capabilities of the Auger observatories. In the hypothesis of nu_mu-->nu_tau oscillations with full mixing, special emphasis is placed on the observation of tau neutrinos, with which Auger is able to establish the GZK cutoff as well as to provide a strong and model independant constraint on the top-down sources of ultra high energy cosmic rays.
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!