No Arabic abstract
12CO 1-0,2-1,4-3,7-6, and 13CO 1-0, 2-1, and 3-2 line was mapped with angular resolutions of 13 - 22 toward the nuclear region of starburst galaxy M82. The difference of lobe spacings in submillimeter (~15) and millimeter (~26) lines indicates the presence of a `low and a `high CO excitation component. An LVG excitation analysis of the submillimeter lines leads to inconsistencies, since area and volume filling factors are almost the same, resulting in cloud sizes along the lines-of-sight that match the entire size of the M82 starburst region. Nevertheless, LVG column densities agree with estimates derived from the dust emission in the far infrared and at submillimeter wavelengths. Accounting for high UV fluxes and variations in kinetic temperature and assuming that the observed emission arises from photon dominated regions (PDRs) resolves the problems related to an LVG treatment of the radiative transfer. 12CO/13CO line intensity ratios > 10 indicate that the bulk of the CO emission arises in UV-illuminated diffuse cloud fragments of small column density and sub-parsec cloud sizes with area filling factors >> 1. Thus CO arises from quite a different gas component than the classical high density tracers. The dominance of such a diffuse molecular interclump medium also explains observed high [CI}/CO line intensity ratios. PDR models do not allow a determination of the relative abundances of 12CO to 13CO. Ignoring magnetic fields, the CO gas appears to be close to the density limit for tidal disruption. A warm diffuse ISM not only dominates the CO emission in the starburst region of M82 but is also ubiquitous in the central region of our Galaxy, where tidal stress, cloud-cloud collisions, shocks, high gas pressure, and high stellar densities may all contribute to the formation of a highly fragmented molecular debris.
Images of an 8 square minute region around the Orion KL source have been made in the J=7-6 (806 GHz) and J=4-3 (461 GHz) lines of CO with angular resolutions of 13 and 18. These data were taken employing on-the-fly mapping and position switching techniques. Our J=7-6 data set is the largest image of Orion with the highest sensitivity and resolution obtained so far in this line. Most of the extended emission arises from a Photon Dominated Region (PDR), but 8% is associated with the Orion ridge. For the prominent Orion KL outflow, we produced ratios of the integrated intensities of our J=7-6 and 4-3 data to the J=2-1 line of CO. Large Velocity Gradient (LVG) models fit the outflow ratios better than PDR models. The LVG models give H_2 densities of ~10^5 per ccm. The CO outflow is probably heated by shocks. In the Orion S outflow, the CO line intensities are lower than for Orion KL. The 4-3/2-1 line ratio is 1.3 for the blue shifted wing and 0.8 for the red shifted wing. Emission in the jet feature extending 2 to the SW of Orion S was detected in the J=4-3 but not the J=7-6 line; the average 4-3/2-1 line ratio is ~1. The line ratios in the Orion S outflow and jet features are consistent with both PDR and LVG models. Comparisons of the intensities of the J=7-6 and J=4-3 lines from the Orion Bar with PDR models show that the ratios exceed predictions by a factor of 2. Either clumping or additional heating by mechanisms such as shocks, may be the cause of this discrepancy.
Dense molecular gas and star formation are correlated in galaxies. The effect of low metallicity on this relationship is crucial for interpreting observations of high redshift galaxies, which have lower metallicities than galaxies today. However, it remains relatively unexplored because dense molecular gas tracers like HCN and HCO+ are faint in low metallicity systems. We present Green Bank Telescope observations of HCN(1-0) and HCO+(1-0) on giant molecular cloud (34pc) scales in the nearby low metallicity ($12+log({rm O/H})=8.2$) starburst IC 10 and compare them to those in other galaxies. We detect HCN and HCO+ in one and three of five pointings, respectively. The $I_{rm HCN}/I_{rm HCO+}$ values are within the range seen in other galaxies, but are most similar to those seen in other low metallicity sources and in starbursts. The detections follow the fiducial $L_{rm IR}$-$L_{rm HCN}$ and $L_{rm IR}$-$L_{rm HCO+}$ relationships. These trends suggest that HCN and HCO+ can be used to trace dense molecular gas at metallicities of 1/4 $Z_odot$, to first order. The dense gas fraction is similar to that in spiral galaxies, but lower than that in U/LIRGs. The dense molecular gas star formation efficiency, however, is on the upper end of those in normal galaxies and consistent with those in U/LIRGs. These results suggest that the CO and HCN/HCO+ emission occupy the same relative volumes as at higher metallicity, but that the entire emitting structure is reduced in size. Dense gas mass estimates for high redshift galaxies may need to be corrected for this effect.
Charge-exchange (CE) emission produces features which are detectable with the current X-ray instrumentation in the brightest near galaxies. We describe these aspects in the observed X-ray spectra of the star forming galaxies M82 and NGC 3256, from the Suzaku and XMM-Newton telescopes. Emission from both ions (O, C) and neutrals (Mg, Si) is recognised. We also describe how microcalorimeter instrumentation on future missions will improve CE observations.
A study of the distribution of OH gas in the central region of the nearby active starburst galaxy M82 has confirmed two previously known bright masers and revealed several new main line masers. Three of these are seen only at 1665 MHz, one is detected only at 1667 MHz, while the rest are detected in both lines. Observations covering both the 1665 and 1667 MHz lines, conducted with both the Very Large Array (VLA) and the Multi-Element Radio Linked Interferometer Network (MERLIN), have been used to accurately measure the positions and velocities of these features. This has allowed a comparison with catalogued continuum features in the starburst such as HII regions and supernova remnants, as well as known water and satellite line OH masers. Most of the main line masers appear to be associated with known HII regions although the two detected only at 1665 MHz are seen along the same line of sight as known supernova remnants.
Ultra Luminous Infra-Red Galaxies (ULIRGs) -- gas-rich mergers harboring the most extreme star-forming conditions encountered in the local Universe -- are thought to re-enact the galaxy formation processes we are only barely able to glimpse in the distant Universe. Combining new single-dish molecular line observations of 12CO, 13CO, HCO+, HCN, and CS towards the two ULIRGs Arp220 and NGC6240 with existing data in the literature, we have compiled the most extensive molecular line data-sets to date of such galaxies. The data allow us to put strong constraints on the properties of the dense star forming gas in these two systems, and compare the relative usefulness of CS, HCN and HCO+ as tracers of dense gas. In addition, we have build molecular line templates based on our observations, and demonstrate that Herschel/HI-FI will be able to detect the high-J transitions of most of the above molecules in a large sample of ULIRGs out to z<=0.5, assuming Arp220 and NGC6240 are representative of the ULIRG population at these redshifts.