Do you want to publish a course? Click here

The UV spectra of NLS1s - Implications for their broad line regions

186   0   0.0 ( 0 )
 Added by Thomas Boller
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the UV spectra of NLS1 galaxies and compare them with typical Seyfert 1 galaxies and quasars. The NLS1 spectra show narrower UV lines as well as weaker CIV lambda 1549 and CIII] lambda 1909 emission. We show that these line properties are due to a lower ionization parameter and somewhat higher BLR cloud densities. These modified conditions can be explained by the hotter big blue bumps observed in NLS1s, which are in turn due to higher L/L_Edd ratios, as shown by our accretion disk and corona modeling of the NLS1 continua. We also present evidence that the Boroson & Green eigenvector 1, which is correlated with the optical and UV emission-line properties, is not driven by orientation and hence NLS1s, which have extreme eigenvector 1 values, are not viewed from an extreme viewing angle.



rate research

Read More

583 - Hai Fu , Alan Stockton 2007
We present a correlation between the presence of luminous extended emission-line regions (EELRs) and the metallicity of the broad-line regions (BLRs) of low-redshift quasars. The result is based on ground-based [O III] 5007 narrow-band imaging and Hubble Space Telescope UV spectra of 12 quasars at 0.20 < z < 0.45. Quasars showing luminous EELRs have low-metallicity BLRs (Z < 0.6 Z_Solar), while the remaining quasars show typical metal-rich gas (Z > Z_Solar). Previous studies have shown that EELRs themselves also have low metallicities (Z < 0.5 Z_Solar). The correlation between the occurrence of EELRs and the metallicity of the BLRs, strengthened by the sub-Solar metallicity in both regions, indicates a common external origin for the gas, almost certainly from the merger of a gas-rich galaxy. Our results provide the first direct observational evidence that the gas from a merger can indeed be driven down to the immediate vicinity (< 1 pc) of the central black hole.
169 - Sascha Trippe 2015
The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with bolometric rather than monochromatic AGN luminosity, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on H-alpha / H-beta and C IV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.
140 - Bradley M. Peterson 2011
I review how AGN black hole masses are calculated from emission-line reverberation-mapping data, with particular attention to both assumptions and caveats. I discuss the empirical relationship between AGN luminosity and broad-line region radius that underpins the indirect methods by which most AGN masses are estimated. I also discuss how line widths are characterized in this method and illustrate how different ways of measuring the line-widths can lead to systematic errors in the mass scale. I discuss specific implications for NLS1 galaxies and consider whether the NLS1 phenomenon is better explained by source inclination or by Eddington rate, and conclude that there is evidence that both of these effects are contributing factors and that at least the high-Eddington rate NLS1s are physically similar to some high-luminosity quasars.
Within the context of investigating possible differences between the mechanisms at play in Radio Loud AGN and those in Radio Quiet ones, we study the spectral characteristics of a selected sample of Intermediate-Luminosity Broad-Line Radio Galaxies in X-rays, optical, IR and radio. Here, we present the radio spectra acquired with the 100-m radio telescope in Effelsberg between 2.6 and 32 GHz. These measurements reveal a large variety of spectral shapes urging for radio imaging that would disclose the source morphology. Such studies could potentially discriminate between different mechanisms.
We describe results from a new ground-based monitoring campaign on NGC 5548, the best studied reverberation-mapped AGN. We find that it was in the lowest luminosity state yet recorded during a monitoring program, namely L(5100) = 4.7 x 10^42 ergs s^-1. We determine a rest-frame time lag between flux variations in the continuum and the Hbeta line of 6.3 (+2.6/-2.3) days. Combining our measurements with those of previous campaigns, we determine a weighted black hole mass of M_BH = 6.54 (+0.26/-0.25) x 10^7 M_sun based on all broad emission lines with suitable variability data. We confirm the previously-discovered virial relationship between the time lag of emission lines relative to the continuum and the width of the emission lines in NGC 5548, which is the expected signature of a gravity-dominated broad-line region. Using this lowest luminosity state, we extend the range of the relationship between the luminosity and the time lag in NGC 5548 and measure a slope that is consistent with alpha = 0.5, the naive expectation for the broad line region for an assumed form of r ~ L^alpha. This value is also consistent with the slope recently determined by Bentz et al. for the population of reverberation-mapped AGNs as a whole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا