Age difference between the populations of binary and single F~stars revealed from HIPPARCOS data


Abstract in English

We have compared the kinematics and metallicity of the main sequence binary and single {it uvby} F stars from the {it HIPPARCOS} catalog to see if the populations of these stars originate from the same statistical ensemble. The velocity dispersions of the known unresolved binary F stars have been found to be dramatically smaller than those of the single F stars. This suggests that the population of these binaries is, in fact, younger than that of the single stars, which is further supported by the difference in metal abundance: the binaries turn out to be, on average, more metal rich than the single stars. So, we conclude that the population of these binaries is indeed {it younger} than that of the single F stars. Comparison of the single F stars with the C binaries (binary candidates identified in Suchkov & McMaster 1999) has shown, on the other hand, that the latter stars are, on average, {it older} than the single F stars. We suggest that the age difference between the single F stars, known unresolved binaries, and C binaries is associated with the fact that stellar evolution in a binary systems depends on the binary components mass ratio and separation, with these parameters being statistically very different for the known binaries and C binaries (e.g., mostly substellar secondaries in C binaries versus stellar secondaries in known binaries). In general we conclude that the populations of known binaries, C binaries, and single F stars do not belong to the same statistical ensemble. The implications of the discovered age difference between these populations along with the corresponding differences in kinematics and metallicity should be important not only for understanding the evolution of stars but also for the history of star formation and the evolution of the local galactic disk.

Download